完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChang, Jen-Yinen_US
dc.contributor.authorLee, Kuan-Yingen_US
dc.contributor.authorWei, Yu-Linen_US
dc.contributor.authorLin, Kate Ching-Juen_US
dc.contributor.authorHsu, Winstonen_US
dc.date.accessioned2017-04-21T06:48:23Z-
dc.date.available2017-04-21T06:48:23Z-
dc.date.issued2016en_US
dc.identifier.isbn978-1-4503-3603-1en_US
dc.identifier.urihttp://dx.doi.org/10.1145/296428,1.2967203en_US
dc.identifier.urihttp://hdl.handle.net/11536/136442-
dc.description.abstractDue to die characteristics of ubiquity, non occlusion,privacy preservation of Win, many researchers have devoted to human action recognition using WiFi signals. As demonstrated in [1], Channel State information (CSI), a fine-grained information capturing the properties of WiFi signal propagation, could be transformed into images for achieving a promising accuracy on action recognition via vision-based :methods. However, from the experimental results shown in [1], the CSI is usually location dependent, which affects the recognition performance if signals are recorded in different places. In this paper. We propose a location-dependency removal method based on Singular Value Decomposition (SVD) to eliminate the background CSI and effectively extract the channel information of signals reflected by human bodies. Experimental results show that our method considering the correlation of CST streams could achieve promising accuracy above 90% in identifying six actions even testing in live different rooms.en_US
dc.language.isoen_USen_US
dc.titleLocation-Independent WiFi Action Recognition via Vision-based Methodsen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/296428,1.2967203en_US
dc.identifier.journalMM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCEen_US
dc.citation.spage162en_US
dc.citation.epage166en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000387733800018en_US
dc.citation.woscount0en_US
顯示於類別:會議論文