完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Ching-Hangen_US
dc.contributor.authorLiu, Tyng-Luhen_US
dc.contributor.authorWang, Yu-Shuenen_US
dc.contributor.authorChu, Hung-Kuoen_US
dc.contributor.authorTang, Nick C.en_US
dc.contributor.authorLiao, Hong-Yuan Marken_US
dc.date.accessioned2017-04-21T06:48:13Z-
dc.date.available2017-04-21T06:48:13Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4503-3459-4en_US
dc.identifier.urihttp://dx.doi.org/10.1145/2733373.2806297en_US
dc.identifier.urihttp://hdl.handle.net/11536/136479-
dc.description.abstractVideo-based group behavior analysis is drawing attention to its rich applications in sports, military, surveillance and biological observations. The recent advances in tracking techniques, based on either computer vision methodology or hardware sensors, further provide the opportunity of better solving this challenging task. Focusing speci fi cally on the analysis of basketball o ff ensive strategies, we introduce a systematic approach to establishing unsupervised modeling of group behaviors. In view that a possible group behavior (offensive strategy) could be of di ff erent duration and represented by dynamic player trajectories, the crux of our method is to automatically divide training data into meaningful clusters and learn their respective spatio-temporal model, which is established upon Gaussian mixture regression to account for intra-class spatio-temporal variations. The resulting strategy representation turns out to be flexible that can be used to not only establish the discriminant functions but also improve learning the models. We demonstrate the usefulness of our approach by exploring its e ff ectiveness in analyzing a set of given basketball video clips.en_US
dc.language.isoen_USen_US
dc.subjectGroup action recognitionen_US
dc.subjectmachine learningen_US
dc.titleSpatio-Temporal Learning of Basketball Offensive Strategiesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1145/2733373.2806297en_US
dc.identifier.journalMM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCEen_US
dc.citation.spage1123en_US
dc.citation.epage1126en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000387861300208en_US
dc.citation.woscount0en_US
顯示於類別:會議論文