完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWu, Cheng-Heien_US
dc.contributor.authorJiang, Sin-Yien_US
dc.contributor.authorSong, Kai-Taien_US
dc.date.accessioned2017-04-21T06:48:14Z-
dc.date.available2017-04-21T06:48:14Z-
dc.date.issued2015en_US
dc.identifier.isbn978-8-9932-1509-0en_US
dc.identifier.issn2093-7121en_US
dc.identifier.urihttp://hdl.handle.net/11536/136483-
dc.description.abstractIn this paper, we propose a CAD-based 6-DOF pose estimation design for random bin-picking of multiple different objects using a Kinect RGB-D sensor. 3D CAD models of objects are constructed via a virtual camera, which generates a point cloud database for object recognition and pose estimation. A voxel grid filter is suggested to reduce the number of 3D point cloud of objects for reducing computing time of pose estimation. A voting-scheme method was adopted for the 6-DOF pose estimation a swell as object recognition of different type objects in the bin. Furthermore, an outlier filter is designed to filter out bad matching poses and occluded ones, so that the robot arm always picks up the upper object in the bin to increase pick up success rate. A series of experiments on a Kuka 6-axis robot revels that the proposed system works satisfactorily to pick up all random objects in the bin. The average recognition rate of three different type objects is 93.9% and the pickup success rate is 89.7%.en_US
dc.language.isoen_USen_US
dc.subjectIndustrial roboten_US
dc.subjectrandom bin-pickingen_US
dc.subject6-DOF pose estimationen_US
dc.titleCAD-Based Pose Estimation for Random Bin-Picking of Multiple Objects Using a RGB-D Cameraen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2015 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS)en_US
dc.citation.spage1645en_US
dc.citation.epage1649en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000382295200344en_US
dc.citation.woscount0en_US
顯示於類別:會議論文