完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Chung-Yuanen_US
dc.contributor.authorFu, Yu-Hsiangen_US
dc.contributor.authorSun, Chuen-Tsaien_US
dc.date.accessioned2017-04-21T06:48:32Z-
dc.date.available2017-04-21T06:48:32Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-4274-9en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ICDMW.2014.31en_US
dc.identifier.urihttp://hdl.handle.net/11536/136493-
dc.description.abstractIdentifying the most influential individuals spreading ideas, information, or infectious diseases is a topic receiving significant attention from network researchers, since such identification can assist or hinder information dissemination, product exposure, or contagious disease detection. Hub nodes, high betweenness nodes, high closeness nodes, and high k-shell nodes have been identified as good initial spreaders. However, few efforts have been made to use node diversity within network structures to measure spreading ability. The two-step framework described in this paper uses a robust and reliable measure that combines global diversity and local features to identify the most influential network nodes. Results from a series of SusceptibleInfected- Recovered (SIR) epidemic simulations indicate that our proposed method performs well and stably in single initial spreader scenarios associated with various complex network datasets.en_US
dc.language.isoen_USen_US
dc.subjectnetwork diversityen_US
dc.subjectentropyen_US
dc.subjectsocial network analysisen_US
dc.subjectk-shell decompositionen_US
dc.subjectepidemic modelen_US
dc.titleIdentify influential social network spreadersen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/ICDMW.2014.31en_US
dc.identifier.journal2014 IEEE International Conference on Data Mining Workshop (ICDMW)en_US
dc.citation.spage562en_US
dc.citation.epage568en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000389255100077en_US
dc.citation.woscount0en_US
顯示於類別:會議論文