完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Yi-Chengen_US
dc.contributor.authorWeng, Julia Tzu-Yaen_US
dc.contributor.authorWang, Jun-Zheen_US
dc.contributor.authorChou, Chien-Lien_US
dc.contributor.authorHuang, Jiun-Longen_US
dc.contributor.authorLee, Suh-Yinen_US
dc.date.accessioned2017-04-21T06:48:30Z-
dc.date.available2017-04-21T06:48:30Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-6991-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/136497-
dc.description.abstractIn several applications, sequence databases generally update incrementally with time. Obviously, it is impractical and inefficient to re-mine sequential patterns from scratch every time a number of new sequences are added into the database. Some recent studies have focused on mining sequential patterns in an incremental manner; however, most of them only considered patterns extracted from time point-based data. In this paper, we proposed an efficient algorithm, Inc_TPMiner, to incrementally mine sequential patterns from interval-based data. We also employ some optimization techniques to reduce the search space effectively. The experimental results indicate that Inc_TPMiner is efficient in execution time and possesses scalability. Finally, we show the practicability of incremental mining of interval-based sequential patterns on real datasets.en_US
dc.language.isoen_USen_US
dc.subjectdynamic representationen_US
dc.subjectincremental miningen_US
dc.subjectinterval-based patternen_US
dc.subjectsequential pattern miningen_US
dc.titleIncrementally Mining Temporal Patterns in Interval-based Databasesen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2014 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA)en_US
dc.citation.spage304en_US
dc.citation.epage311en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000380559500046en_US
dc.citation.woscount0en_US
顯示於類別:會議論文