Full metadata record
DC FieldValueLanguage
dc.contributor.authorChiang, Sheng-Haoen_US
dc.contributor.authorWu, I-Chenen_US
dc.contributor.authorLin, Ping-Hungen_US
dc.date.accessioned2017-04-21T06:48:28Z-
dc.date.available2017-04-21T06:48:28Z-
dc.date.issued2010en_US
dc.identifier.isbn978-3-642-12992-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/136510-
dc.description.abstractIn 2005, Wu and Huang [9] presented a generalized family of k-in-a-row games. The current paper simplifies the family to Connect(k, p). Two players alternately place p stones on empty squares of an infinite board in each turn. The player who first obtains k consecutive stones of his\' own horizontally, vertically, diagonally wins. A Connect(k, p) game is drawn if both have no winning strategy. Given p, this paper derives the value k(draw)(p), such that Connect(k(draw)(p), p) is drawn, as follows. (1) k(draw)(2) = 11. (2) For all p >= 3, k(draw)(p) = 3p+3d+8, where d is a logarithmic function of p. So, the ratio k(draw)(p)/p is approximate to 3 for sufficiently large p. To our knowledge, our k(draw)(p) are currently the smallest for all 2 <= p <= 1000, except for p = 3.en_US
dc.language.isoen_USen_US
dc.titleOn Drawn K-In-A-Row Gamesen_US
dc.typeProceedings Paperen_US
dc.identifier.journalADVANCES IN COMPUTER GAMESen_US
dc.citation.volume6048en_US
dc.citation.spage158en_US
dc.citation.epage+en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000279365900015en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper