完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Chung-Yuanen_US
dc.contributor.authorHsieh, Ji-Lungen_US
dc.contributor.authorSun, Chuen-Tsaien_US
dc.contributor.authorCheng, Chia-Yingen_US
dc.date.accessioned2017-04-21T06:48:39Z-
dc.date.available2017-04-21T06:48:39Z-
dc.date.issued2006en_US
dc.identifier.isbn978-3-540-49026-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/136533-
dc.description.abstractWe describe a music recommender model that uses intermediate agents to evaluate music composition according to their own rules respectively, and make recommendations to user. After user scoring recommended items, agents can adapt their selection rules to fit user tastes, even when user preferences undergo a rapid change. Depending on the number of users, the model can also be applied to such tasks as critiquing large numbers of music, image, or written compositions in a competitive contest with other judges. Several experiments are reported to test the model\'s ability to adapt to rapidly changing conditions yet still make appropriate decisions and recommendations.en_US
dc.language.isoen_USen_US
dc.subjectmusic recommender systemen_US
dc.subjectinteractive evolutionary computingen_US
dc.subjectadaptive agenten_US
dc.subjectcritiquing subjective dataen_US
dc.subjectcontent-based filteringen_US
dc.titleEvaluating subjective compositions by the cooperation between human and adaptive agentsen_US
dc.typeProceedings Paperen_US
dc.identifier.journalMICAI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGSen_US
dc.citation.volume4293en_US
dc.citation.spage974en_US
dc.citation.epage+en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000244587700093en_US
dc.citation.woscount0en_US
顯示於類別:會議論文