完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chun-Haoen_US
dc.contributor.authorTseng, Vincent S.en_US
dc.contributor.authorYu, Hsieh-Huien_US
dc.contributor.authorHong, Tzung-Peien_US
dc.contributor.authorYen, Neil Y.en_US
dc.date.accessioned2017-04-21T06:48:38Z-
dc.date.available2017-04-21T06:48:38Z-
dc.date.issued2016en_US
dc.identifier.issn1741-1106en_US
dc.identifier.urihttp://dx.doi.org/10.1504/IJWGS.2016.079159en_US
dc.identifier.urihttp://hdl.handle.net/11536/136536-
dc.description.abstractIn our previous approach, we proposed an algorithm for finding segments and patterns simultaneously from a given time series. In that approach, because patterns were derived through clustering techniques, the number of clusters was hard to be setting. In other words, the granularity of derived patterns was not taken into consideration. Hence, an approach for deriving appropriate granularity levels of patterns is proposed in this paper. The cut points of a time series are first encoded into a chromosome. Each two adjacent cut points represents a segment. The segments in a chromosome are then divided into groups using the cluster affinity search technique with a similarity matrix and an affinity threshold. With the affinity threshold, patterns with the desired granularity level can be derived. Experiments on a real dataset are also conducted to demonstrate the effectiveness of the proposed approach.en_US
dc.language.isoen_USen_US
dc.subjectgenetic algorithmen_US
dc.subjectsegmentationen_US
dc.subjecttime seriesen_US
dc.subjectclusteringen_US
dc.subjectPIPsen_US
dc.subjectperceptually important pointsen_US
dc.titleA GA-based approach for finding appropriate granularity levels of patterns from time seriesen_US
dc.typeArticleen_US
dc.identifier.doi10.1504/IJWGS.2016.079159en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF WEB AND GRID SERVICESen_US
dc.citation.volume12en_US
dc.citation.issue3en_US
dc.citation.spage217en_US
dc.citation.epage239en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000389957700002en_US
dc.citation.woscount0en_US
顯示於類別:會議論文