完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChou, Yu-Chiunen_US
dc.contributor.authorLan, Lawrence W.en_US
dc.contributor.authorChen, Wen-Pinen_US
dc.date.accessioned2014-12-08T15:19:03Z-
dc.date.available2014-12-08T15:19:03Z-
dc.date.issued2010en_US
dc.identifier.isbn978-988-98847-8-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/13678-
dc.description.abstractThis paper proposes a two-stage analytical framework to identify the critical risk conditions contributing to crash severity. The first stage develops a genetic mining rule (GMR) model to identify possible risk conditions best elucidating the degree of severity. The second stage then uses the mined risk conditions as dummy explanatory variables to formulate an ordered Probit model. The proposed two-stage analytical framework is applied to analyze the Taiwan's empirical one-vehicle crash data. A total of 38 rules are mined, which can achieve overall prediction rates of 75.10% in training and 73.80% in validation. Based on the results, six most critical risk conditions are identified and the corresponding countermeasures are addressed.en_US
dc.language.isoen_USen_US
dc.subjectCrash severityen_US
dc.subjectgenetic mining ruleen_US
dc.subjectordered Probit modelen_US
dc.titleIDENTIFYING RISK CONDITIONS TO CRASH SEVERITY: GENETIC MINING RULE APPROACHen_US
dc.typeProceedings Paperen_US
dc.identifier.journalTRANSPORTATION AND URBAN SUSTAINABILITYen_US
dc.citation.spage399en_US
dc.citation.epage406en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000290467500058-
顯示於類別:會議論文