Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, PTen_US
dc.contributor.authorTsai, TMen_US
dc.contributor.authorChang, TCen_US
dc.date.accessioned2014-12-08T15:19:10Z-
dc.date.available2014-12-08T15:19:10Z-
dc.date.issued2005-05-02en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.1921329en_US
dc.identifier.urihttp://hdl.handle.net/11536/13729-
dc.description.abstractThis letter explores the application of electron-beam curing on nanoporous silicate films. The electrical conduction mechanism for the nanoporous silicate film cured by electron-beam radiation has been studied with metal-insulator-semiconductor capacitors. Electrical analyses over a varying temperature range from room temperature to 150 degrees C provide evidence for space-charge-limited conduction in the electron-beam-cured thin film, while Schottky-emission-type leaky behavior is seen in the counterpart typically cured by a thermal furnace. A physical model consistent with electrical analyses is also proposed to deduce the origin of conduction behavior in the nanoporous silicate thin film. (c) 2005 American Institute of Physics.en_US
dc.language.isoen_USen_US
dc.titleLeakage conduction behavior in electron-beam-cured nanoporous silicate filmsen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/1.1921329en_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.citation.volume86en_US
dc.citation.issue18en_US
dc.citation.epageen_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.department光電工程學系zh_TW
dc.contributor.department顯示科技研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.contributor.departmentDepartment of Photonicsen_US
dc.contributor.departmentInstitute of Displayen_US
dc.identifier.wosnumberWOS:000229288700039-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. 000229288700039.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.