Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 匡顯吉 | zh_TW |
dc.contributor.author | 王秀瑛 | zh_TW |
dc.contributor.author | 銀慶剛 | zh_TW |
dc.contributor.author | Kuang, Hsien-Chi | en_US |
dc.contributor.author | Wang, Hsiu-Ying | en_US |
dc.contributor.author | Ing, Ching-Kang | en_US |
dc.date.accessioned | 2018-01-24T07:35:36Z | - |
dc.date.available | 2018-01-24T07:35:36Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352615 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/138509 | - |
dc.description.abstract | 近幾年來透過因子分析(factor analysis)來估計高維度下的共變異矩陣(high dimensional covariance matrix)是越來越受歡迎,但要應用因子分析來估計在高維度下的共變異矩陣的反矩陣(high dimensional precision matrix)是非常的困難,因為在估計高維度誤差的共變異矩陣的反矩陣(high dimensional error precision matrix)當中,通常都含有稀疏(sparse)的限制。這篇論文結合了 modified Cholesky decomposition 以及 orthogonal greedy algorithm (OGA)的方法來估計在稀疏限制下高維度誤差的共變異矩陣的反矩陣,並應用在財務上 mean-variance portfolio optimization 的問題。在模擬的結果中,我們所提的方法比傳統的 threshold 來的更好。 | zh_TW |
dc.description.abstract | Recently, it has drawn attention on estimation of high-dimensional covariance matrices by using factor analysis. However, it is very difficult to apply factor analysis estimation of high-dimensional precision matrices. Because one of the commonly used conditions for estimating high-dimensional error precision matrix is to assume the covariance matrix to be sparse. This study combine modified Cholesky decomposition and orthogonal greedy algorithm (OGA) approaches to estimate the high-dimensional precision matrix under the constraint that the covariance matrix is sparse. The result can be used to deal with the mean-variance portfolio optimization problem. According to the simulation results, the proposed approach outperforms the adaptive thresholding method. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 因子分析 | zh_TW |
dc.subject | 共變異反矩陣 | zh_TW |
dc.subject | modified Cholesky decomposition | zh_TW |
dc.subject | Orthogonal greedy algorithm、 | zh_TW |
dc.subject | 均值-方差最佳解 | zh_TW |
dc.subject | Factor analysis | en_US |
dc.subject | Precision matrix | en_US |
dc.subject | Modified Cholesky decomposition | en_US |
dc.subject | Orthogonal greedy algorithm | en_US |
dc.subject | Mean-variance optimization | en_US |
dc.title | 針對均值-方差最佳化的巨大共變異反矩陣估計 | zh_TW |
dc.title | Estimation of Large Precision Matrix for High Dimensional Mean-Variance Optimization | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
Appears in Collections: | Thesis |