Full metadata record
DC FieldValueLanguage
dc.contributor.author匡顯吉zh_TW
dc.contributor.author王秀瑛zh_TW
dc.contributor.author銀慶剛zh_TW
dc.contributor.authorKuang, Hsien-Chien_US
dc.contributor.authorWang, Hsiu-Yingen_US
dc.contributor.authorIng, Ching-Kangen_US
dc.date.accessioned2018-01-24T07:35:36Z-
dc.date.available2018-01-24T07:35:36Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352615en_US
dc.identifier.urihttp://hdl.handle.net/11536/138509-
dc.description.abstract近幾年來透過因子分析(factor analysis)來估計高維度下的共變異矩陣(high dimensional covariance matrix)是越來越受歡迎,但要應用因子分析來估計在高維度下的共變異矩陣的反矩陣(high dimensional precision matrix)是非常的困難,因為在估計高維度誤差的共變異矩陣的反矩陣(high dimensional error precision matrix)當中,通常都含有稀疏(sparse)的限制。這篇論文結合了 modified Cholesky decomposition 以及 orthogonal greedy algorithm (OGA)的方法來估計在稀疏限制下高維度誤差的共變異矩陣的反矩陣,並應用在財務上 mean-variance portfolio optimization 的問題。在模擬的結果中,我們所提的方法比傳統的 threshold 來的更好。zh_TW
dc.description.abstractRecently, it has drawn attention on estimation of high-dimensional covariance matrices by using factor analysis. However, it is very difficult to apply factor analysis estimation of high-dimensional precision matrices. Because one of the commonly used conditions for estimating high-dimensional error precision matrix is to assume the covariance matrix to be sparse. This study combine modified Cholesky decomposition and orthogonal greedy algorithm (OGA) approaches to estimate the high-dimensional precision matrix under the constraint that the covariance matrix is sparse. The result can be used to deal with the mean-variance portfolio optimization problem. According to the simulation results, the proposed approach outperforms the adaptive thresholding method.en_US
dc.language.isoen_USen_US
dc.subject因子分析zh_TW
dc.subject共變異反矩陣zh_TW
dc.subjectmodified Cholesky decompositionzh_TW
dc.subjectOrthogonal greedy algorithm、zh_TW
dc.subject均值-方差最佳解zh_TW
dc.subjectFactor analysisen_US
dc.subjectPrecision matrixen_US
dc.subjectModified Cholesky decompositionen_US
dc.subjectOrthogonal greedy algorithmen_US
dc.subjectMean-variance optimizationen_US
dc.title針對均值-方差最佳化的巨大共變異反矩陣估計zh_TW
dc.titleEstimation of Large Precision Matrix for High Dimensional Mean-Variance Optimizationen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis