标题: 利用相机撷取影像的非接触式心跳讯号提取技术
On Camera-based Contactless Heart Beat Signal Extraction T echniques
作者: 黄仁猷
董兰荣
Huang, Ren-You
Dung, Lan-Rong
电控工程研究所
关键字: 心脏生理资讯;非接触式光体积量测;心跳频率;心率变异;心跳间隔;Cardiac physiology;contactless photoplethysmography;heart rate;heart rate variability;R-R intervals
公开日期: 2016
摘要: 近年来,由于非接触和低成本的优点,使用相机进行光体积量测成为一门热门的研究领域。此类技术能够在不接触皮肤的情况下量测出心脏的生理资讯,如:心跳频率、心率变异。然而,过去发表的研究成果对于非静止的受测者,量测心跳频率的准确度相当有限,特别是当剧烈动作所产生的干扰其频率落在跟心跳频率相同的频带内。另外,先前的研究对于用相机量测心率变异的表现也是相当有限,因为心率变异是由心跳间隔换算出来的各种统计数值,而心跳间隔本身对于杂讯和干扰特别敏感,即使量测目标静止不动,也很难取得准确的心跳间隔进而换算成准确的心率变异。本论文针对上述两种心脏生理资讯,分别提出对应的非接触式方法解决在特定应用上遭遇的问题。第一个是针对运动中的心跳频率量测提出的运动稳健演算法,第二个是针对日常生活使用手机或平板的情境下准确量测使用者心率变异的方法。我们提出的心跳频率量测方法能够移除运动造成的干扰并准确量测到在运动器材(如:跑步机)上剧烈运动的受试者心跳,实验证实我们的演算法能够把平均准确率从71% 改善到94%。另一方面,我们提出的心率变异量测方法能够在不同测试条件下,得到相当接近于接触式装置所得到的心跳间隔所换算出来的心率变异数值。根据实验结果,对于所有测试影片,我们的演算法所得到的心率变异指标的平均绝对值误差仅有4.33 (毫秒)。
Recently, the camera-based photoplethysmography (PPG) became a popular research field due to the non-contact and low-cost properties. These techniques are able to measure the cardiac physiology, e.g., heart rate, heart rate variability (HRV) without contacting the skin of subject. However, the previous works showed limited success to measure the heart rate when subjects are not stationary, especially when the interference rendered by both vigorous motions and heart beat are in the same frequency band. Besides, the previous works showed limited success for estimating the HRV since the HRV is computed by the beat-to-beat intervals (also known as R-R intervals, RRI) which are sensitive to noise and artifacts. Even when the subject is static, it is still difficult to obtain reliable RRI for computing accurate HRV. This dissertation proposed two contactless algorithms corresponding to two different applications: the first one is motion-robust heart rate estimation for exercising subject; the second one is accurate HRV measurement for monitoring the HRV of the smart phone or tablet users in daily-life scenario. The proposed heart rate estimation can remove the motion artifacts even when subject is exercising on some fitness machines (e.g. treadmill). Experiments show that our algorithm significantly improved the averaged estimation accuracy from 71% to 94% correct. The proposed HRV estimation method is able to obtain reliable HRV metrics which are close to the ones measured by contact device under different conditions. As shown in experiments, the averaged error of HRV metrics obtained by our method is only 4.33 (in the unit of millisecond) for all the video clips.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT079812502
http://hdl.handle.net/11536/138514
显示于类别:毕业论文