Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 戴克倫 | zh_TW |
dc.contributor.author | 翁志文 | zh_TW |
dc.contributor.author | Tai, Ke-Lun | en_US |
dc.contributor.author | Weng, Chih-Wen | en_US |
dc.date.accessioned | 2018-01-24T07:36:18Z | - |
dc.date.available | 2018-01-24T07:36:18Z | - |
dc.date.issued | 2015 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070252227 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/138684 | - |
dc.description.abstract | 左輸帶是半群的一種特例,本篇論文介紹左輸帶的定義並給兩個重要的例 子。如對左輸帶內的元素給定機率分佈,可由其隨機漫步得到轉移矩陣,其特徵 值與重數的性質探討為本論文之重點,我們介紹一個已知結果並對照我們所做的 例子。 | zh_TW |
dc.description.abstract | A left regular band (LRB) is a semigroup. We will give the definition and examples of LRBs. The transition matrix is defined from running random walks on an LRB with a given probability distribution. For a theorem of Brown, the eigenvalues of such a transition matrix are completely determined. We will check the theorem with our examples. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 半群 | zh_TW |
dc.subject | 左輸帶 | zh_TW |
dc.subject | 隨機漫步 | zh_TW |
dc.subject | 轉移矩陣 | zh_TW |
dc.subject | 特徵值 | zh_TW |
dc.subject | Semigroup | en_US |
dc.subject | LRB | en_US |
dc.subject | random walk | en_US |
dc.subject | transition matrix | en_US |
dc.subject | eigenvalue | en_US |
dc.title | 左輸帶的特徵值之研究 | zh_TW |
dc.title | Eigenvalues of Left Regular Bands | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 應用數學系所 | zh_TW |
Appears in Collections: | Thesis |