標題: 1,4-雙三唑橋聯之長碳鏈雙芳杯衍生物之合成、自組裝與順反異構化熱力學研究
Syntheses, Self-assambly, and Kinetics of Photo-responsive 1,4-Bistriazolyl- Bridged Alkyl Biscalix[4]arene Derivatives
作者: 許輔任
鍾文聖
Hsu, Fu-Jen
Chung, Wen-Sheng
應用化學系碩博士班
關鍵字: 三唑;雙芳杯;自組裝;順反異構化熱力學;triazole;biscalix[4]arene;self-assembly;cis-trans isomerization
公開日期: 2016
摘要: 本文成功利用點擊化學之方式,合成出以雙亞甲基蒽及偶氮苯為橋聯之長碳鏈雙芳杯化合物,期望藉由上緣修飾長碳鏈增強膠體可能性。經過一系列膠體性質測試,我們發現偶氮苯橋聯雙芳杯化合物44分別在六種不同溶劑中會形成膠體,其臨界膠體濃度約在0.111.25 w/v %,而雙亞甲基蒽橋聯雙芳杯化合物43即使上緣修飾上長碳鏈還是無法形成膠體。對照實驗室合成之化合物,我們可以證實,上緣的長碳烷基及第三丁基所提供之凡得瓦作用力對於形成膠體具有很大之影響力。接著,我們藉由掃描式與穿透式電子顯微鏡來探討其自組裝的形貌,並運用變溫NMR、紫外可見光吸收光譜、及紅外光譜儀來推測自組裝的模型,並利用紫外光及可見光來調控長碳鏈雙芳杯化合物的順反異構化,進而調控溶-膠相轉變及自組裝形貌的轉變。 本文除了修飾上緣長碳鏈之外,也研究了修飾脲基的雙芳杯合成,期望雙芳杯化合物藉由上緣脲基團間的氫鍵作用力,產生包覆作用或形成更好的有機膠體。但因為時間不足及合成過程分離不易,所以目前此研究完成度有限。 偶氮苯可藉由照光及調控溫度而具有順反異構化之特性,目前已經有許多文獻討論影響順反異構化速率之因素,在本文中主要以一系列偶氮苯為橋聯之巨環分子 (Macrocycles) 進行機制之探討。在系列化合物44、52、53及56中,我們可以發現此系列間之順反異構化活化能 (12.8716.20 Kcal/mol),皆隨著分子量增加而有些微上升之趨勢,因此我們認為rotation扮演重要機制,但此推測仍有討論空間,需借助更多對照化合物及理論計算以釐清其反應機制。
In this thesis, we design and synthesize 9,10-dimethylanthracene and azobenzene bridged biscalix[4]arenes 43 and 44 with n-hexyl group on the upper-rim of calix[4]arene by click reaction to enhance the gelation property. According to the results, we found compound 44 could form gels in six different solvents with critical gelation concentration at 0.111.25 w/v % while compound 43 could not. Variable-temperature 1H-NMR, variable-temperature absorption spectra, SEM, TEM, and IR spectroscopy are used to gain our understanding of possible packing models of the gelator. We also design and try to synthesize the bis-uriedocalix[4]arene. Because of the encapsulation by hydrogen bonding, we believe there is potential for better gelator and application to control-release field. However, we just complete a short progress due to the difficulty in separation and limitation of time. Furthermore, we also study the thermally induced cis-trans isomerization of a series of azobenzene-bridged macrocycles. On the basis of the research done by Ms. Huang and me, the results indicate that rotation mechanism may have played a major role in influencing the activation energy of the cis-trans isomerization of azobenzene derivatives. In other word, the size of substitutes will influence on the isomerization of azobenzene derivatives. The mechanisms of these azobenzene-bridged macrocycles still remain to be discussed further, and computational simulation is worthy of studying.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352550
http://hdl.handle.net/11536/138794
顯示於類別:畢業論文