完整後設資料紀錄
DC 欄位語言
dc.contributor.author林宗緯zh_TW
dc.contributor.author黃俊龍zh_TW
dc.contributor.authorLin,Tsung-Weien_US
dc.date.accessioned2018-01-24T07:37:56Z-
dc.date.available2018-01-24T07:37:56Z-
dc.date.issued2015en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070256502en_US
dc.identifier.urihttp://hdl.handle.net/11536/139362-
dc.description.abstract隨著近年來電子商務的興起 ,如何在消費紀錄中找出有用的消費資訊是電子商務公司的一大課題 ,電子商務公司認為商品的獲利情況比銷售量還要重要 ,因此 ,high utility itemset mining 比 frequent itemset mining 更適用於這類情況 。在現實中 ,資料庫的更新頻率相當頻繁 ,而且一直對整個資料庫重新 mining 會很沒效率 。有鑒於此 ,我們在本論文中提出了一種能在漸增式資料庫中高效探勘 high utility itemsets 的演算法 ,我們做了很多實驗以測試我們演算法的效能 。實驗結果指出 ,相較於以前的漸增式資料庫演算法 ,我們的演算法用了較高的記憶體但擁有更高效率探勘 high utility itemsets 的能力。zh_TW
dc.description.abstractElectronic commerce is getting popular in recent years. It is important for electronic commerce companies to find useful patterns from purchase records. Companies usually pay more attention in the profit (utility) earned rather than number of items sold. Thus, high utility itemset mining is more suitable for such cases than frequent itemset mining. In practice, the database is updated continuously, and re-mining the whole database is inefficient. In view of this, we propose in this thesis an algorithm to efficiently mine high utility itemsets in an incremental manner. In order to measure the performance of the proposed algorithm, several experiments have been conducted. Experimental results show that our algorithm is able to mine high utility itemsets more efficiently than prior algorithms on an incremental database at a cost of higher memory usage.en_US
dc.language.isozh_TWen_US
dc.subject漸增式資料庫zh_TW
dc.subject探勘演算法zh_TW
dc.subject高效益物品集zh_TW
dc.subject資料探勘zh_TW
dc.subjectincremental databaseen_US
dc.subjectmining algorithmen_US
dc.subjecthigh utility itemseten_US
dc.subjectdata miningen_US
dc.titleIHUIMiner: 一個能在漸增式資料庫中高效探勘高效益物品集的演算法zh_TW
dc.titleIHUIMiner: An Efficient Algorithm for Mining High Utility Itemset in Incremental Databaseen_US
dc.typeThesisen_US
dc.contributor.department網路工程研究所zh_TW
顯示於類別:畢業論文