Full metadata record
DC FieldValueLanguage
dc.contributor.author侯嘉豪zh_TW
dc.contributor.author王才沛zh_TW
dc.contributor.authorWang, Tsai-Peien_US
dc.date.accessioned2018-01-24T07:38:06Z-
dc.date.available2018-01-24T07:38:06Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070356633en_US
dc.identifier.urihttp://hdl.handle.net/11536/139517-
dc.description.abstract本篇論文是實做在TORCS 平台上,以蒙地卡羅樹搜尋作為尋找最佳賽車路線的核心演算法,製作賽車AI。蒙地卡羅樹搜尋演算法大致上分為四個部分:選點、展開、模擬和更新,文中會介紹如何把蒙地卡羅樹搜尋運用在模擬賽車的AI上,分別為各個步驟量身打造。賽車行進時,程式會在一定時間內自行模擬大量賽車路線,並透過時間差比較優劣,從中找出較佳的賽車路線來當作實際行走的依據。最後透過TORCS內建的AI比較其結果,利用一個比較基礎的AI證明可行性,再與另一個高等純熟的AI比較其差異性。zh_TW
dc.description.abstractThis paper is concerning about how to find the best route of the car racing game on TORCS by Monte-Carlo Tree Search, an algorithm includes four parts: choice of site, expansion, simulation and update. While simulating the car racing AI, the program will generate a great number of routes and find out one way through the difference in time to work in reality. Finally, compare the results between two AI to choose which is more feasibility.en_US
dc.language.isozh_TWen_US
dc.subject蒙地卡羅zh_TW
dc.subject模擬賽車zh_TW
dc.subjectMonte-Carlo Tree Searchen_US
dc.subjectsimulation racingen_US
dc.titleMCTS蒙地卡羅樹於模擬賽車之應用zh_TW
dc.titleApplication of Monte-Carlo Tree Search on Simulation Car Racingen_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
Appears in Collections:Thesis