完整後設資料紀錄
DC 欄位語言
dc.contributor.author駱聖文zh_TW
dc.contributor.author胡竹生zh_TW
dc.contributor.authorLUO,SHENG-WENen_US
dc.contributor.authorHu, Jwu-Shengen_US
dc.date.accessioned2018-01-24T07:38:55Z-
dc.date.available2018-01-24T07:38:55Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070460001en_US
dc.identifier.urihttp://hdl.handle.net/11536/140098-
dc.description.abstract本論文提出一個里程估測的演算法,使用EM-GICP當作LiDAR點雲縫合的方法,結合拓撲的邊緣、平面特徵點截取方法以及使用重力投影法來估測線性加速度。最後使用非一致性取樣多取樣率之卡爾曼濾波器來串連LiDAR以及IMU。 本論文旨在解決點雲縫合時會因環境特徵不足等原因造成最佳化的局部最小值,和IMU當作里程計時會有的偏移現象。使用的主要方法是結合兩個sensor的特性,IMU輔助動態的狀態估測,LiDAR強調穩態的收斂。更使用最大期望算法增強點雲縫合的最佳化強健性zh_TW
dc.description.abstractThe proposed algorithm uses EM-GICP as LiDAR registration algorithm combined with topology approach plane and edge feature extraction, gravity projection method to estimate the linear acceleration and complete the odometry algorithm with nonlinear multi-rate Kalman filter does fusion of data from noisy sensors, LiDAR and IMU. The proposed method solves the problem of local minimum in common LiDAR base algorithm, and drift problem while using IMU. Moreover, this thesis combines the General-ICP with EM algorithm to get more robust optimization outcome in each iteration, use topology approach feature extraction method to fit the property of sensor for getting more physical meaning feature points.en_US
dc.language.isoen_USen_US
dc.subject里程計zh_TW
dc.subject非一致性多率取樣zh_TW
dc.subject卡曼濾波器zh_TW
dc.subject光學雷達zh_TW
dc.subject慣性感測器zh_TW
dc.subject點雲縫合zh_TW
dc.subjectOdometryen_US
dc.subjectNon-Uniformly Multirate Sampleden_US
dc.subjectKalman filteren_US
dc.subjectLiDARen_US
dc.subjectIMUen_US
dc.subjectpoint cloud registrationen_US
dc.title一種里程估測演算法基於非一致性多率取樣含限制條件之卡曼濾波器使用LiDAR及IMUzh_TW
dc.titleAn Odometry Algorithm based on Constrained and Non-Uniformly Multirate Sampled Kalman Filter using LiDAR and IMUen_US
dc.typeThesisen_US
dc.contributor.department電控工程研究所zh_TW
顯示於類別:畢業論文