標題: 障礙選擇權定價:Richardson外插法
Richardson Extrapolation Techniques for the Pricing of Barrier Options
作者: 陳彬
郭家豪
Chen, Bin
Guo, Jia-Hau
財務金融研究所
關鍵字: 障礙選擇權;靜態複製法;Richardson外插法;Barrier option;Static replication;Richardson extrapolation
公開日期: 2017
摘要: 本論文研究障礙選擇權靜態複製之優化方法,傳統障礙選擇權的靜態複製考慮匹配目標選擇權在邊界上的各點價值,從而複製出與目標選擇權具有同樣報酬分佈的投資組合。作為數值方法,靜態複製法可能需要消耗較大時間。而在本文中,通過Richardson外插法將已經得到的估計值做線性運算,不斷消除截斷誤差中的低階項,進而提高估計值的精確度;同時在此基礎上,給出了一個Richardson方法的簡單效率研究。另外,为了符合Richardson外插法的应用条件,本文在非标准障碍选择权静态复制法估计值的收敛性方面也做了相关研究,再給出了實操經驗的同時,本文還說明了利用Richardson外插法時,每一步估計值和精確值之間的誤差估計。最後,對於任意標準障礙選擇權而言,通過插值法給出了達到特定精度要求所需的歐式選擇權組合。
This thesis focuses on the improvement of accuracy in the barrier option pricing. The traditional way of static replication of barrier option is to match the value of points on the option’s value boundary, and get a portfolio which has the same payoff with target option. In this article, we apply the Richardson extrapolation to improve the accuracy of estimation outcome by eliminating the low order item of truncation error. Considering the monotonously converge condition of Richardson’s method, a study in convergence of estimation value is given under exotic barrier situation. Furthermore, Richardson extrapolation also provides a reliable error estimation method to obtain the specific replication portfolio under any given error tolerance level (TOL).
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070353140
http://hdl.handle.net/11536/140216
Appears in Collections:Thesis