完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳威遠zh_TW
dc.contributor.author王逸如zh_TW
dc.contributor.authorChen, Wei-Yuanen_US
dc.date.accessioned2018-01-24T07:39:07Z-
dc.date.available2018-01-24T07:39:07Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070350741en_US
dc.identifier.urihttp://hdl.handle.net/11536/140329-
dc.description.abstract本論文主要研究分為語言模型的改善和中文詞向量的研究與應用。在語言模型的改善,我們使用加權有限狀態轉換機於語音辨識上,透過事先給定正確的音素序列取代聲學模型,使得辨識結果完全由語言模型決定。我們藉由改善斷詞後處理和發音字典建立不同的語言模型使辨識率提升。 另外一個研究是有關中文詞向量的研究與應用。我們研究一詞多義對中文詞向量的影響,使用非監督式的學習方法利用詞向量標記一詞多義,透過上下文環境和詞性資訊進行詞義標記來解決一詞多義的問題,並將改善後的結果進行多種定性分析,最後將詞義資訊加入於語言模型中,訓練出一個具有詞義資訊的語言模型。zh_TW
dc.description.abstractThis thesis can be divided into two parts, the improvement of language model and Chinese word embedding and its application. In the improvement of the language model, we use the weighted finite state transducer on speech recognition. We use the correct phoneme sequence to replace the acoustic model, which result the speech recognition only depend on language model. By improving the post-processing of word segmentation and pronunciation dictionary can enhance accuracy of speech recognition. In Chinese word embedding, we study the polysemy effect on Chinese words vectors. To solve the problem of polysemy, we use unsupervised learning to label polysemy by multiple word sense vector which was learning from context and part-of-speech. We propose some qualitative analysis to measure the improvement. Finally, we construct a language model which contain the semantic information by word sense corpus which was labeled polysemy by multiple word sense vector.en_US
dc.language.isozh_TWen_US
dc.subject語音辨認zh_TW
dc.subject語言模型zh_TW
dc.subject遞迴式類神經網路語言模型zh_TW
dc.subject詞向量zh_TW
dc.subject一詞多義向量zh_TW
dc.subject詞義標記zh_TW
dc.subjectspeech recognitionen_US
dc.subjectlanguage modelen_US
dc.subjectRecurrent Neural Network Language Modelen_US
dc.subjectword vectoren_US
dc.subjectmultiple word sense vectoren_US
dc.subjectword sense labelen_US
dc.title中文多義詞標記及其在語言模型的應用zh_TW
dc.titleChinese Multiple Word Sense Labeling and Its Application to Language Modelingen_US
dc.typeThesisen_US
dc.contributor.department電機工程學系zh_TW
顯示於類別:畢業論文