完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 高黃江 | zh_TW |
dc.contributor.author | 吳毅成 | zh_TW |
dc.contributor.author | Cao, Hoang Giang | en_US |
dc.contributor.author | Wu, I-Chen | en_US |
dc.date.accessioned | 2018-01-24T07:39:07Z | - |
dc.date.available | 2018-01-24T07:39:07Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070356166 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/140330 | - |
dc.description.abstract | 深度類神經網路(Deep Neural Network)是2006年開始發展的一種機器學習技術。近年來,深度類神經網路被廣泛利用在資訊工程領域的各種應用上,並獲得出色的成績。 本論文將深度類神經網路應用在遊玩Ms. Pac-Man的遊戲上。深度加強學習(Deep Reinforcement Learning)是一種結合深度類神經網路與Q學習方法(Q-learning)的技術,也是加強學習的一個變體。此研究將Ms. Pac-Man遊戲中抽象化後的資訊當成類神經網路的輸入,使用其網路的人工智慧程式,可以在超過90%的嘗試中通過前兩個關卡。在最短通關時間與最佳通關分數兩項數據上,深度加強學習方法與之前的蒙地卡羅搜尋樹(Monte-Carlo Tree Search)方法相比,有顯著的進步。 | zh_TW |
dc.description.abstract | Deep Neural Network (DNN), a branch of machine learning was introduced in 2006, have had remarkable success in of computer science. DNN can be applied to solving a wide range of problems. Deep Reinforcement Learning (DRL) is a combination of DNN and Q-learning, a form of Reinforcement Learning technique. This thesis applies DRL to create a program playing Ms. Pac-Man game. This study uses the abstracted information of Ms. Pac-Man game as the input of the network. Our program can pass the first level at a rate of 99.10%, the second at 91.20%, and the third at 82.60%. The performance of DRL method is significantly better than Monte Carlo Tree Search (MCTS) in terms of both time and score. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 深度強化式學習之 | zh_TW |
dc.subject | 小精靈 | zh_TW |
dc.subject | 深度類神經網路 | zh_TW |
dc.subject | Deep Reinforcement Learning | en_US |
dc.subject | Ms. Pac-Man | en_US |
dc.subject | Deep Neural Network | en_US |
dc.title | 適用於小精靈的深度強化式學習之研究 | zh_TW |
dc.title | A Study of Deep Reinforcement Learning for Ms. Pac-Man | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電機資訊國際學程 | zh_TW |
顯示於類別: | 畢業論文 |