Full metadata record
DC FieldValueLanguage
dc.contributor.author吳帥輝zh_TW
dc.contributor.author陳玲慧zh_TW
dc.contributor.authorWu, Shuai-Huien_US
dc.contributor.authorChen, Ling-Hweien_US
dc.date.accessioned2018-01-24T07:39:35Z-
dc.date.available2018-01-24T07:39:35Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070356820en_US
dc.identifier.urihttp://hdl.handle.net/11536/140624-
dc.description.abstract從一九七零年代以來,計算機視覺領域就開始研究人類的動作,人類動作的識別一直是很活躍的研究領域。近年來人類動作的識別在安全監視系統、老人與幼兒的居家照顧上有大量的應用,例如老人跌倒偵測,就是個很實際的應用。目前人類識別的研究方法大多是利用局部特徵及時空特徵做人類動作辨識,雖有不錯的辨識準確率,但在特徵偵測與擷取上十分複雜且費時,本論文擬提出一簡單的特徵擷取法,針對六種單一人類動作:拳擊、揮手、拍手、跑步、慢跑與走路,建立各項動作的訓練模型,再以訓練完成的動作模型,對未知的動作影片以支援向量機 (Support Vector Machine SVM)做動作的辨識。zh_TW
dc.description.abstractResearch in machine perception of human activities has started in the computer vision community since the 1970’s. Recently, recognizing human activities have a large number of applications in the safety surveillance system and care for the elderly and children system. Methods based on local features and spatio-temporal local features are now widely used in human activities recognition. Although they have good recognition accuracy, but they are very complex and time-consuming in feature detection and feature extraction. This thesis proposes a method to represent a human activity by simple features, six human actions are considered, they are boxing, hand waving, handclapping, running, jogging and walking. A training model for each human action is built, and the training model is used to recognize human action by SVM(Support Vector Machine).en_US
dc.language.isozh_TWen_US
dc.subject特徵擷取zh_TW
dc.subject動作訓練模型zh_TW
dc.subject動作識別zh_TW
dc.subject支援向量機zh_TW
dc.subjectfeature extractionen_US
dc.subjecttraining modelen_US
dc.subjectSVMen_US
dc.titleKTH人類動作資料集上以光流法辨識人類動作zh_TW
dc.titleRecognizing Human Actions by Optical Flow on the KTH Dataseten_US
dc.typeThesisen_US
dc.contributor.department資訊學院資訊學程zh_TW
Appears in Collections:Thesis