完整後設資料紀錄
DC 欄位語言
dc.contributor.author孫建宇zh_TW
dc.contributor.author黃世昆zh_TW
dc.contributor.authorSun Jian-Yuen_US
dc.contributor.authorHuang, Shih-Kunen_US
dc.date.accessioned2018-01-24T07:39:44Z-
dc.date.available2018-01-24T07:39:44Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456090en_US
dc.identifier.urihttp://hdl.handle.net/11536/140766-
dc.description.abstract模糊測試是目前軟體測試方法中最有效的一種。藉由反覆隨機的測試,找尋 程式的弱點或有問題的片段,協助程式開發者發現並修改程式的缺陷。 本論文改良模糊測試工具 American fuzzy lop (AFL) 、融入 Adaptive Random Sequence 與 Category-Partition-based Distance 方法,修改此二方法以符合 AFL 的 設計方式,精進模糊測試所產生資料的離散程度,藉以提升測試資料對目標程式 的覆蓋率。 目前已對幾個開放原始碼的套件進行測試,確實能提升程式覆蓋率zh_TW
dc.description.abstractThis thesis proposed a way to improve test case coverage in fuzz testing that combine Adaptive Random Sequence and Category–Partition-base Distance with American fuzzy lop (AFL). Finally, we applied this fuzzer to test several known vulnerabilities open source applications, and the coverage is improved.en_US
dc.language.isozh_TWen_US
dc.subject模糊測試zh_TW
dc.subjectfuzz testingen_US
dc.title基於調適性隨機序列之模糊測試zh_TW
dc.titleFuzz Testing based on Adaptive Random Sequence Methoden_US
dc.typeThesisen_US
dc.contributor.department資訊科學與工程研究所zh_TW
顯示於類別:畢業論文