完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | 孫建宇 | zh_TW |
dc.contributor.author | 黃世昆 | zh_TW |
dc.contributor.author | Sun Jian-Yu | en_US |
dc.contributor.author | Huang, Shih-Kun | en_US |
dc.date.accessioned | 2018-01-24T07:39:44Z | - |
dc.date.available | 2018-01-24T07:39:44Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456090 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/140766 | - |
dc.description.abstract | 模糊測試是目前軟體測試方法中最有效的一種。藉由反覆隨機的測試,找尋 程式的弱點或有問題的片段,協助程式開發者發現並修改程式的缺陷。 本論文改良模糊測試工具 American fuzzy lop (AFL) 、融入 Adaptive Random Sequence 與 Category-Partition-based Distance 方法,修改此二方法以符合 AFL 的 設計方式,精進模糊測試所產生資料的離散程度,藉以提升測試資料對目標程式 的覆蓋率。 目前已對幾個開放原始碼的套件進行測試,確實能提升程式覆蓋率 | zh_TW |
dc.description.abstract | This thesis proposed a way to improve test case coverage in fuzz testing that combine Adaptive Random Sequence and Category–Partition-base Distance with American fuzzy lop (AFL). Finally, we applied this fuzzer to test several known vulnerabilities open source applications, and the coverage is improved. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 模糊測試 | zh_TW |
dc.subject | fuzz testing | en_US |
dc.title | 基於調適性隨機序列之模糊測試 | zh_TW |
dc.title | Fuzz Testing based on Adaptive Random Sequence Method | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 資訊科學與工程研究所 | zh_TW |
顯示於類別: | 畢業論文 |