標題: | 在線學習運用於4G/LTE網路流量資料辨識 Online Learning for 4G/LTE Network Traffic Data Classification |
作者: | 席瑋辰 盧鴻興 Hsi, Wei-Chen Lu, Horng-Shing 統計學研究所 |
關鍵字: | 監督式學習;在線學習;多類別分類;非線性模型;Supervised learning;Online-learning;Multiclass classification;non-linear model |
公開日期: | 2017 |
摘要: | 透過在線學習演算法可以建立一個動態即時預測模型,而使用kernel的概念可以將線性模型轉換成非線性模型。本研究將著名的在線學習演算法Passive-Aggressive Algorithm結合kernel與Budget的概念,並透過對偶問題的結果,推導出一個可以做資源控管的非線性模型算法並將Passive-Aggressive Algorithm與本論文推倒的演算法運用於4G/LTE網路流量資料辨識的預測上。 Based on online-learning algorithm, we can create a dynamic model, and we can transform a linear predictor into a non-linear one by using kernel functions. This study derives a new non-linear online-learning algorithm by combining the famous online learning algorithm, Passive-Aggressive algorithm with kernels and conception of budget. The new algorithm creates a non-linear predictor, and manage the resources which the model used. Finally both the new algorithm and the original Passive-Aggressive algorithm are perform on the 4G LTE network traffic data. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070452603 http://hdl.handle.net/11536/141090 |
顯示於類別: | 畢業論文 |