Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 彭恩榮 | zh_TW |
dc.contributor.author | 陳鄰安 | zh_TW |
dc.contributor.author | Peng, En-Jung | en_US |
dc.contributor.author | Chen, Lin-An | en_US |
dc.date.accessioned | 2018-01-24T07:40:28Z | - |
dc.date.available | 2018-01-24T07:40:28Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070452619 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/141277 | - |
dc.description.abstract | 本論文的第一個目的是研究有沒有可能在X並非Y的成因(cause),但統計分析資料卻發現它們有統計相關。這就是擾亂(confounding)效果。第二個目的在於研究變數X為因對Y的效果之理論研究並進行模擬分析。最後我們將提出一個實際資料分析的結果。 | zh_TW |
dc.description.abstract | The first aim of this thesis is to study confounding effect in causal inference. It is to see when variable X is not a cause of response Y but we see the presence of statistical association between X and Y. The second aim is to study the theory of causal effect of X as the cause of response variable Y and conduct a simulation study of this causal effect. Finally we want to conduct a data analysis on causal effect. | en_US |
dc.language.iso | zh_TW | en_US |
dc.subject | 因果關係 | zh_TW |
dc.subject | 直接效果 | zh_TW |
dc.subject | 間接效果 | zh_TW |
dc.subject | causal effect | en_US |
dc.subject | direct effect | en_US |
dc.subject | indirect effect | en_US |
dc.title | 因果關係的進一步研究 | zh_TW |
dc.title | An Advanced Study for Causal Effect | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 統計學研究所 | zh_TW |
Appears in Collections: | Thesis |