Full metadata record
DC FieldValueLanguage
dc.contributor.author彭恩榮zh_TW
dc.contributor.author陳鄰安zh_TW
dc.contributor.authorPeng, En-Jungen_US
dc.contributor.authorChen, Lin-Anen_US
dc.date.accessioned2018-01-24T07:40:28Z-
dc.date.available2018-01-24T07:40:28Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070452619en_US
dc.identifier.urihttp://hdl.handle.net/11536/141277-
dc.description.abstract本論文的第一個目的是研究有沒有可能在X並非Y的成因(cause),但統計分析資料卻發現它們有統計相關。這就是擾亂(confounding)效果。第二個目的在於研究變數X為因對Y的效果之理論研究並進行模擬分析。最後我們將提出一個實際資料分析的結果。zh_TW
dc.description.abstractThe first aim of this thesis is to study confounding effect in causal inference. It is to see when variable X is not a cause of response Y but we see the presence of statistical association between X and Y. The second aim is to study the theory of causal effect of X as the cause of response variable Y and conduct a simulation study of this causal effect. Finally we want to conduct a data analysis on causal effect.en_US
dc.language.isozh_TWen_US
dc.subject因果關係zh_TW
dc.subject直接效果zh_TW
dc.subject間接效果zh_TW
dc.subjectcausal effecten_US
dc.subjectdirect effecten_US
dc.subjectindirect effecten_US
dc.title因果關係的進一步研究zh_TW
dc.titleAn Advanced Study for Causal Effecten_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis