標題: | 循環圖上的連通控制數 Connected Domination Number in Circulant Graphs |
作者: | 陳文暐 傅恆霖 Chen, Wen-Wei Fu, Hung-Lin 應用數學系所 |
關鍵字: | 控制集;連通控制集;循環圖;Dominating set;Connected dominating set;Circulant graphs |
公開日期: | 2017 |
摘要: | 令 G 為一圖。一個 G 的點子集 S⊆V(G) 如果是一個 G 的控制集且由 S 導出的子圖是連通的話,則 S 被稱為 G 的一個連通控制集。在所有可能的連通控制集裡取最少的控制集點數,稱為 G 的連通控制數,記為 γ_c(G)。
對於一整數 n,令 D 為 {1,2,...,⌊n/2⌋} 的子集。一個圖被稱為點數為 n 且跳集為 D 的循環圖,記作 G(n;D),若且唯若它的點集合和邊集合分別為 V(G(n;D)) = {v_i | i ∈ {0,1,...,n-1}},及 E(G(n;D)) = {{v_i,v_j} | |i-j|_n ∈ D, i,j ∈ {0,1,...,n-1}},其中 |i-j|_n = min{|i-j|, n-|i-j|}。
在這篇論文中,我們將探討跳集 D 為連續整數集合的循環圖 G(n;D) 的連通控制數。我們將針對特定的點數 n 及跳集 D 給出兩種不同型式的循環圖,並試圖找出 G(n;D) 連通控制數的精確值。 Let G be a graph. A set S⊆V(G) is a connected dominating set of G if S is a dominating set of G and the subgraph induced by S is connected. The minimum size among connected dominating sets of G is the connected domination number of G, denoted by γ_c(G). For an integer n, let D be a subset of {1,2,...,⌊n/2⌋}. A circulant graph of order n with the jump set D, denoted by G(n;D), is a graph whose vertex set and edge set are, respectively, defined by V(G(n;D)) = {v_i | i ∈ {0,1,...,n-1}}, and E(G(n;D)) = {{v_i,v_j} | |i-j|_n ∈ D, i,j ∈ {0,1,...,n-1}}, where |i-j|_n = min{|i-j|, n-|i-j|}. In this thesis, we study γ_c(G(n;D)), where D is a set of consecutive integers. As a consequence, for certain D and n, we obtained the exact value of γ_c(G(n;D)). |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070452202 http://hdl.handle.net/11536/141420 |
Appears in Collections: | Thesis |