Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 王振宇 | zh_TW |
dc.contributor.author | 陸曉峯 | zh_TW |
dc.contributor.author | Wang,Zhen-Yu | en_US |
dc.contributor.author | Lu,Hsiao-Feng | en_US |
dc.date.accessioned | 2018-01-24T07:41:00Z | - |
dc.date.available | 2018-01-24T07:41:00Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070460253 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/141448 | - |
dc.description.abstract | 這篇論文是關於使用Guruswami-Sudan 演算法解里德所羅門碼,其中包含Kötter 和 Roth-Ruckenstein 的改善,主要分為插值和分解兩部份。在Guruswami-Sudan 演算法中可以比Berlekamp-Massey 演算法更正更多的錯誤。藉由挑選插值的重根數,GS 解碼端最後會回傳包含所有漢明距離小於tm 的所有訊號的列表,其中解碼半徑tm 是插值重根數的一個函式。最後,我們使用其他方法去執行插值的部分並比較複雜度。 | zh_TW |
dc.description.abstract | This thesis is about the Guruswami-Sudan decoding algorithm of Reed-Solomon code, including the Kötter and Roth-Ruckenstein improvements, and containing two main parts, Interpolation and Factorization. In Guruswam-Sudan algorithm, it can correct more errors than other decoding by Berlekamp-Massey algorithm. By choosing the interpolation multiplicity m , the GS decoder finally returns the list which includes all codewords with Hamming distance tm, where the decoding radius tm is a function of interpolation multiplicity. Finally, we use another method to process the interpolation part and compare the complexity. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | 里德所羅門 | zh_TW |
dc.subject | Reed-Solomon | en_US |
dc.title | 里德所羅門系統碼的Guruswami-Sudan解碼:複雜度比較 | zh_TW |
dc.title | Guruswami-Sudan decoding of systematic Reed-Solomon code: complexity comparison | en_US |
dc.type | Thesis | en_US |
dc.contributor.department | 電信工程研究所 | zh_TW |
Appears in Collections: | Thesis |