標題: 里德所羅門系統碼的Guruswami-Sudan解碼:複雜度比較
Guruswami-Sudan decoding of systematic Reed-Solomon code: complexity comparison
作者: 王振宇
陸曉峯
Wang,Zhen-Yu
Lu,Hsiao-Feng
電信工程研究所
關鍵字: 里德所羅門;Reed-Solomon
公開日期: 2017
摘要: 這篇論文是關於使用Guruswami-Sudan 演算法解里德所羅門碼,其中包含Kötter 和 Roth-Ruckenstein 的改善,主要分為插值和分解兩部份。在Guruswami-Sudan 演算法中可以比Berlekamp-Massey 演算法更正更多的錯誤。藉由挑選插值的重根數,GS 解碼端最後會回傳包含所有漢明距離小於tm 的所有訊號的列表,其中解碼半徑tm 是插值重根數的一個函式。最後,我們使用其他方法去執行插值的部分並比較複雜度。
This thesis is about the Guruswami-Sudan decoding algorithm of Reed-Solomon code, including the Kötter and Roth-Ruckenstein improvements, and containing two main parts, Interpolation and Factorization. In Guruswam-Sudan algorithm, it can correct more errors than other decoding by Berlekamp-Massey algorithm. By choosing the interpolation multiplicity m , the GS decoder finally returns the list which includes all codewords with Hamming distance tm, where the decoding radius tm is a function of interpolation multiplicity. Finally, we use another method to process the interpolation part and compare the complexity.
URI: http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070460253
http://hdl.handle.net/11536/141448
Appears in Collections:Thesis