完整後設資料紀錄
DC 欄位語言
dc.contributor.author王振宇zh_TW
dc.contributor.author陸曉峯zh_TW
dc.contributor.authorWang,Zhen-Yuen_US
dc.contributor.authorLu,Hsiao-Fengen_US
dc.date.accessioned2018-01-24T07:41:00Z-
dc.date.available2018-01-24T07:41:00Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070460253en_US
dc.identifier.urihttp://hdl.handle.net/11536/141448-
dc.description.abstract這篇論文是關於使用Guruswami-Sudan 演算法解里德所羅門碼,其中包含Kötter 和 Roth-Ruckenstein 的改善,主要分為插值和分解兩部份。在Guruswami-Sudan 演算法中可以比Berlekamp-Massey 演算法更正更多的錯誤。藉由挑選插值的重根數,GS 解碼端最後會回傳包含所有漢明距離小於tm 的所有訊號的列表,其中解碼半徑tm 是插值重根數的一個函式。最後,我們使用其他方法去執行插值的部分並比較複雜度。zh_TW
dc.description.abstractThis thesis is about the Guruswami-Sudan decoding algorithm of Reed-Solomon code, including the Kötter and Roth-Ruckenstein improvements, and containing two main parts, Interpolation and Factorization. In Guruswam-Sudan algorithm, it can correct more errors than other decoding by Berlekamp-Massey algorithm. By choosing the interpolation multiplicity m , the GS decoder finally returns the list which includes all codewords with Hamming distance tm, where the decoding radius tm is a function of interpolation multiplicity. Finally, we use another method to process the interpolation part and compare the complexity.en_US
dc.language.isoen_USen_US
dc.subject里德所羅門zh_TW
dc.subjectReed-Solomonen_US
dc.title里德所羅門系統碼的Guruswami-Sudan解碼:複雜度比較zh_TW
dc.titleGuruswami-Sudan decoding of systematic Reed-Solomon code: complexity comparisonen_US
dc.typeThesisen_US
dc.contributor.department電信工程研究所zh_TW
顯示於類別:畢業論文