Full metadata record
DC FieldValueLanguage
dc.contributor.author李俊昌zh_TW
dc.contributor.author黃冠華zh_TW
dc.contributor.authorLi,Chung-Changen_US
dc.contributor.authorHuang ,Guan-Huaen_US
dc.date.accessioned2018-01-24T07:41:00Z-
dc.date.available2018-01-24T07:41:00Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070452613en_US
dc.identifier.urihttp://hdl.handle.net/11536/141449-
dc.description.abstract用於生產各式產品的機台一直是工廠中很重要的設備,因此如何預測機台設備零件的剩餘壽命(remaining useful life, RUL)以避免機台的耗損是一個重要的議題。然而機台設備零件的資料相當複雜且龐大,使用單一個模型往往很難得到良好的預測,因此在本論文中以具線性混和效應(linear mixed effects)之參數衰變模型(parametric degradation models)為基礎學習演算法(base learner),使用三種整體學習方法(ensemble learning):靴拔重抽總合法(bagging)、推升法(boosting)與堆疊法(stacking),以改善基礎學習法在預測與分析上的準確度。本論文將以一組由生產LED晶片的MOCVD機台上所獲得之感測資料(censoring data)為例,來說明與展示所提出的整體學習方法。為了因應例題機台設備資料的重複測量值(repaeted measurements)型態,我們使用移動區塊靴拔法(moving block bootstrap)取代原來整體學習方法的靴拔法(bootstrap)。zh_TW
dc.description.abstractThe machine equipment that is used to produce several products is important facility in factory. Therefore, how to predict the remaining useful life (RUL) of equipment components to avoid damage to the machine is an important issue. The censoring data from the machine are usually too huge and complicate to get accurate RUL prediction by one single model. Thus, in this thesis, we adopt a parametric degradation model with linear mixed effects as the base learner and combine three popular ensemble learning approaches: bagging, boosting and stacking to improve the prediction accuracy of the base learner. This thesis analyzes a set of censoring data from the MOCVD machine equipment that produces LED chips, and uses them to demonstrate the usefulness of the proposed ensemble learning approaches. Because the analyzed censoring data contain repeated measurements, instead of using the traditional bootstrap sampling method, we use the moving block bootstrap sampling in the ensemble learning procedures.en_US
dc.language.isozh_TWen_US
dc.subject整體學習法zh_TW
dc.subject靴拔重抽總合法zh_TW
dc.subject推升法zh_TW
dc.subject堆疊法zh_TW
dc.subject移動區塊靴拔法zh_TW
dc.subject剩餘壽命zh_TW
dc.subject機台設備零件zh_TW
dc.subject感測資料zh_TW
dc.subject線性混和效應zh_TW
dc.subject參數衰變模型zh_TW
dc.subjectensemble learningen_US
dc.subjectbaggingen_US
dc.subjectboostingen_US
dc.subjectstackingen_US
dc.subjectmoving block bootstrapen_US
dc.subjectremaining useful lifeen_US
dc.subjectequipment componentsen_US
dc.subjectcensoring dataen_US
dc.subjectlinear mixed effectsen_US
dc.subjectparametric degradation modelen_US
dc.title應用整體學習方法於設備元件剩餘壽命之預測zh_TW
dc.titleEnsemble learning for remaining useful life prediction of equipment componentsen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis