标题: | 应用于闭回路神经调节系统具主动学习功能之机器学习处理器设计与实现 A Machine-Learning Processor with On-Chip Active Learning for Closed-Loop Neuromodulation Systems |
作者: | 黄硕安 杨家骧 Huang, Shuo-An Yang, Chia-Hsiang 电子研究所 |
关键字: | 支持向量机;闭回路系统;主动学习;癫痫侦测;support vector machine;closed-loop system;active learning;epileptic seizure detection |
公开日期: | 2017 |
摘要: | 癫痫为一个长期影响生理的重要神经疾病。大部分的癫痫可以透过药物来进行控制,然而大约30% 的病人需要透过脑部手术来进行治疗并伴随着损失记忆且影响行动力的风险。一个可行且具前景的解决方案是植入式闭回路神经调节系统,其将侦测癫痫发作时机并给予电极刺激来抑制脑部异常放电。在这个系统中,高准确度的癫痫侦测器非常的重要。而机器学习之分类器已被用来侦测癫痫发作并具有高准确度。在机器学习之分类器中,在训练资料不足的情况下,支撑向量机(Support vector machine,SVM)比深度学习更具有实用性。因脑波非常的多变,需要适应学习(Adaptation)来维持分类准确度。然而在植入式的装置中,离线(off-line)适应有资料安全以及隐私的议题,而线上(on-line)适应又被视为难以在晶片上实现。本论文将呈现第一个以支撑向量机为基础之机器学习处理器并具有及时线上适应性的低功耗癫痫侦测器。透过高相关低重复的特征资料选取以及低秩近似来降低特征资料维度,并采用ADMM演算法来达到平行加速运算。Jacobi-based特征值分解与反矩阵运算共用CORDIC运算矩阵来大幅度提高硬体面积使用效率。使用客制化的浮点数运算单元来解决高精准度的需求以及面积与功耗的应用效率。运用大规模的时钟门闸以及将系统操作在最低能量点来进一步减少能量消耗。本论文所提出的以支撑向量机为基础之机器学习处理器采用40nm CMOS制程实现,核心面积为2.55 mm2并具有3.76M个逻辑闸。此侦测器可以在0.71秒内达到侦测与0.39秒内完成线上适应,并具有94.25%的癫痫侦测准确度与0.26%的假警报率。此系统晶片运作在核心电压为0.65伏特与130kHz的操作频率,侦测与适应所消耗的功率分别为0.67mW与0.75mW。 Neurological diseases, such as epilepsy, are long-term disorders and affect body’s activities significantly. Most seizures can be controlled by taking medicine, but approximately 30% of patients need to be considered for surgery at the risk of memory impairment and movement malfunction. A promising solution is a closed-loop implanted neuromodulation system that suppresses the abnormal brain dynamics through electrical stimulation whenever seizures occur. Accurate seizure detection is crucial in such a system and the highest detection accuracy has been achieved by machine learning (ML) based classifiers. Among ML classifiers, support vector machine (SVM) is more powerful than the deep learning ones when sufficient epileptic training data are not available. To maintain the detection accuracy under the high variability of brain dynamics, adaptation of the ML kernel is necessary. However, off-line adaptation has privacy and secure concerns and on-line adaptation is regarded infeasible to be realized on chip for implanted devices. This work presents the first low-power SVM-based ML processor with on-chip adaptation for real-time seizure detection. The signal dimension is significantly reduced through minimum-redundancy maximum-relevance (mRMR) feature selection and low-rank approximation. Alternating direction method of multipliers (ADMM) is adopted to facilitate parallel data processing. Area efficiency is greatly improved by hardware sharing for Jacobi-based eigenvalue decomposition and matrix inversion with shared CORDIC processing elements. Floating-point arithmetic is used for tackling large dynamic range and custom fixed-point to floating-point conversion unit improves power-area efficiency. Extensive clock gating and minimum energy point operation further reduce the energy dissipation. Designed in 40nm CMOS, the proposed SVM-based ML processor integrates 3.76M gates in 2.55 mm2. It achieves a 94.25% seizure detection accuracy and a 0.26% false-alarm rate in 0.71s and adaptation can be realized in 0.39s. The chip dissipates 0.67mW and 0.75mW for detection and adaptation, respectively, at 130kHz from a 0.65 supply voltage. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070450218 http://hdl.handle.net/11536/141482 |
显示于类别: | Thesis |