Full metadata record
DC FieldValueLanguage
dc.contributor.authorHwang, Ruey-Chingen_US
dc.contributor.authorChung, Huiminen_US
dc.contributor.authorChu, C. K.en_US
dc.date.accessioned2014-12-08T15:19:58Z-
dc.date.available2014-12-08T15:19:58Z-
dc.date.issued2010-01-01en_US
dc.identifier.issn0927-5398en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jempfin.2009.07.007en_US
dc.identifier.urihttp://hdl.handle.net/11536/14148-
dc.description.abstractThis paper proposes a prediction method based on an ordered semiparametric probit model for credit risk forecast. The proposed prediction model is constructed by replacing the linear regression function in the usual ordered probit model with a semiparametric function, thus it allows for more flexible choice of regression function. The unknown parameters in the proposed prediction model are estimated by maximizing a local (weighted) log-likelihood function, and the resulting estimators are analyzed through their asymptotic biases and variances. A real data example for predicting issuer credit ratings is used to illustrate the proposed prediction method. The empirical result confirms that the new model compares favorably with the usual ordered probit model. (C) 2009 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectIndustry effecten_US
dc.subjectIssuer credit ratingen_US
dc.subjectMarket-driven variableen_US
dc.subjectOrdered linear probit modelen_US
dc.subjectOrdered semiparametric probit modelen_US
dc.titlePredicting issuer credit ratings using a semiparametric methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jempfin.2009.07.007en_US
dc.identifier.journalJOURNAL OF EMPIRICAL FINANCEen_US
dc.citation.volume17en_US
dc.citation.issue1en_US
dc.citation.spage120en_US
dc.citation.epage137en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000273908200007-
dc.citation.woscount7-
Appears in Collections:Articles


Files in This Item:

  1. 000273908200007.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.