Full metadata record
DC FieldValueLanguage
dc.contributor.author林旻萱zh_TW
dc.contributor.author荊宇泰zh_TW
dc.contributor.authorLin,Min-Hsuanen_US
dc.contributor.authorChing,Yu-Taien_US
dc.date.accessioned2018-01-24T07:41:08Z-
dc.date.available2018-01-24T07:41:08Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070460404en_US
dc.identifier.urihttp://hdl.handle.net/11536/141570-
dc.description.abstract本論文設計一個放置於腳後跟的穿戴式裝置,內部包含三軸加速度計與陀螺儀,透過此裝置收集的數值來做分析,以達到異常步態偵測的功能。資料會先轉換成一個時間相關的特徵,再利用此特徵計算異常分數並建立個人的步態模型,此模型可以用來區分新的資料是否為本人,平均準確率有93%。可以應用於觀察受測者是否產生異常步態,使其得以檢測自身的步態狀況。 實驗的結果說明本研究使用的特徵具有個人的辨識性,而且異常分數的計算方式將訓練資料的分布特性也考慮進來,相對於傳統的歐式距離有了更大的彈性。在未來的應用上可以隨著時間更新本身的訓練資料,成為一個有效辨識異常步態的模型。zh_TW
dc.description.abstractThis thesis presents a wearable device with an accelerometer and a gyroscope for detecting anomalies in human walking. First, the data is converted into a time-related feature. Then, we use this feature to calculate anomaly score and build a personal identification model.The accuracy can reach up to 93%. The experimental results show that the feature used in our thesis have personally identifiable information. In addition, the calculation of the anomaly scores takes into account the distribution of training data,so it has more flexibility than the Euclidean distance. For the future application, their own training data can be updated over time to be a valid identification of abnormal gait.en_US
dc.language.isozh_TWen_US
dc.subject穿戴式裝置zh_TW
dc.subject步態zh_TW
dc.subject身份辨識zh_TW
dc.subject異常分數zh_TW
dc.subjectWearable deviceen_US
dc.subjectGaiten_US
dc.subjectIdentity Verificationen_US
dc.subjectAnomaly scoreen_US
dc.title使用三軸加速度計與陀螺儀之異常步態偵測方法zh_TW
dc.titleA Novel Method for Abnormal Gait Detection Using 3-axis Accelerometer and Gyroscopeen_US
dc.typeThesisen_US
dc.contributor.department生醫工程研究所zh_TW
Appears in Collections:Thesis