標題: | 在均勻多層次網路且有分布時滯的傳染病模型 Epidemic Model in Well-Mixed Multiplex Network with Distributed Time Delay |
作者: | 林煜程 莊重 Lin, Yu-Chen Juang, Jonq 應用數學系數學建模與科學計算碩士班 |
關鍵字: | 分布時滯;一致持續生存;全局穩定性;Distributed time delay;Uniform persistence;Global stability |
公開日期: | 2017 |
摘要: | 在這篇論文中,我們考慮一個有分布時滯的傳染病模型在均勻
網路裡,這個模型由兩個均勻的網路所組成,且假設時滯只在疾病
傳染時才發生,在資訊傳播時不發生時滯。 在這個模型裡有三個正
的固定點E1、E2、E3,分別代表疾病與資訊不爆發、疾病不爆發資
訊爆發和疾病與資訊爆發。 以下是我們主要的結果。 第一、證明
了這個模型裡E3 是一致持續生存的。 第二、證明了E1 的全局穩定
性。 第三、證明了E2 的全局穩定性。 第四、證明了對於夠小的時
滯,E3 的全局穩定性。 In this paper, we consider an epidemic model in well-mixed multiplex networks with distributed time delay. Specifically, the model consists of two layers of well-mixed networks, where two diffusive processes on the same individual interacting and affecting each other. We assume that there is a distributed time delay for an individual getting infected and no delay for an individual changing one’s status from unawareness to awareness. There are three possible equilibria E1, E2 and E3, called disease and information free equilibrium, disease free and information saturated equilibrium and endemic and information saturated equilibrium, in this model. Our main result contain the following. First, we prove the uniform persistence of the model for parameter region yielding E3. Second, it is shown that E1 is globally stable for any time delay. Third, we prove that E2 is globally stable for any time delay. Finally, With help of the uniform persistence, we shoe that there exists a H*>0 such that E3 is globally stable for time delay less than H*. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070452308 http://hdl.handle.net/11536/141702 |
顯示於類別: | 畢業論文 |