完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiou, Fen-Mayen_US
dc.contributor.authorTang, Ying-Chanen_US
dc.contributor.authorChen, Jean-Yien_US
dc.date.accessioned2014-12-08T15:20:03Z-
dc.date.available2014-12-08T15:20:03Z-
dc.date.issued2008-12-01en_US
dc.identifier.issn1386-9620en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10729-008-9054-yen_US
dc.identifier.urihttp://hdl.handle.net/11536/14213-
dc.description.abstractHospitals and health care providers tend to get involved in exaggerated and fraudulent medical claims initiated by national insurance schemes. The present study applies data mining techniques to detect fraudulent or abusive reporting by healthcare providers using their invoices for diabetic outpatient services. This research is pursued in the context of Taiwan's National Health Insurance system. We compare the identification accuracy of three algorithms: logistic regression, neural network, and classification trees. While all three are quite accurate, the classification tree model performs the best with an overall correct identification rate of 99%. It is followed by the neural network (96%) and the logistic regression model (92%).en_US
dc.language.isoen_USen_US
dc.subjectMedical insurance frauden_US
dc.subjectNational health insuranceen_US
dc.subjectDiabetes mellitusen_US
dc.subjectData miningen_US
dc.subjectLogistic regressionen_US
dc.subjectNeural networksen_US
dc.subjectClassification treesen_US
dc.titleDetecting hospital fraud and claim abuse through diabetic outpatient servicesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10729-008-9054-yen_US
dc.identifier.journalHEALTH CARE MANAGEMENT SCIENCEen_US
dc.citation.volume11en_US
dc.citation.issue4en_US
dc.citation.spage353en_US
dc.citation.epage358en_US
dc.contributor.department經營管理研究所zh_TW
dc.contributor.departmentInstitute of Business and Managementen_US
dc.identifier.wosnumberWOS:000207650500004-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000207650500004.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。