Full metadata record
DC FieldValueLanguage
dc.contributor.author楊飛龍zh_TW
dc.contributor.author曾煜棋zh_TW
dc.contributor.authorNyoto Arif Wibowoen_US
dc.contributor.authorTseng, Yu-Cheeen_US
dc.date.accessioned2018-01-24T07:41:53Z-
dc.date.available2018-01-24T07:41:53Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456168en_US
dc.identifier.urihttp://hdl.handle.net/11536/142177-
dc.description.abstract穿戴式裝置識別人體手勢的使用越來越多,在現場還有許多工作能產生良好的識別結果。然而,現有的研究仍然無法顯示特徵和特徵能夠對手勢進行分類的關鍵特徵的形狀。在這項工作中,我們提出了SenseShape,一種基於Shapelet Mining的算法。這是一種強大的算法,由於本地功能的使用,噪聲和失真都很健壯。我們修改算法以處理數據為多維的慣性傳感器,以識別物品採集手勢中的微量活動。 SenseShape通過將距離計算以外的統計特徵實現為慣性數據,改進了傳統的形狀挖掘。為了探索我們視野的可行性,我們使用用戶腕部佩戴的6軸傳感器進行實驗,收集物品在3個不同高度的貨架上放置物品採集手勢數據。新提出的方法表明,無論貨架位置或移動速度如何,精確度和回歸率分別為94.5%和91.6%,可以確定採摘姿勢的微觀活動。zh_TW
dc.description.abstractThe usage of wearable device to recognize human gestures are getting more exposed, there are many work in the field which yield good recognition result. However, existing study still can not show the shape of a key feature which special and distinct-able to classify gestures. In this work we propose SenseShape, an algorithm based on Shapelet Mining. It is a powerful algorithm which robust to noise and distortions because of local features usage. We modify the algorithm to work with inertial sensor whose data are multidimensional to recognize micro activity from item-picking gesture. SenseShape improved the traditional shapelet mining by implementing statistical features other than distance calculation into inertial data. To explore the feasibility of our vision, we conducted experiments using 6-axis sensor worn at wrist of the user to collect item-picking gesture data where objects are put at 3 different height levels of shelf. The new proposed method shows that it can identify micro activity of item-picking gesture regardless of shelf-location or movement speed with 94.7\% accuracy while precision and recall rate is at 94.5\% and 91.6\%, respectively.en_US
dc.language.isoen_USen_US
dc.subject自動感應zh_TW
dc.subject手勢識別zh_TW
dc.subject穿戴式zh_TW
dc.subject統計特徵zh_TW
dc.subject決策樹zh_TW
dc.subject傳感器數據處理zh_TW
dc.subjectShapelet Miningen_US
dc.subjectAutomatic Sensingen_US
dc.subjectHand Gesture Recognitionen_US
dc.subjectWearableen_US
dc.subjectStatistical Featuresen_US
dc.subjectMachine Learningen_US
dc.subjectDecision Treeen_US
dc.subjectSensor Data Processingen_US
dc.title使用延伸形狀探勘之撿取手勢辨識zh_TW
dc.titleItem-picking Gesture Recognition Using Extended Shapelet Miningen_US
dc.typeThesisen_US
dc.contributor.department電機資訊國際學程zh_TW
Appears in Collections:Thesis