完整後設資料紀錄
DC 欄位語言
dc.contributor.author王冠程zh_TW
dc.contributor.author莊仁輝zh_TW
dc.contributor.author李嘉晃zh_TW
dc.contributor.author劉建良zh_TW
dc.contributor.authorWang, Kuan-Chengen_US
dc.contributor.authorChuang, Jen-Huien_US
dc.contributor.authorLee, Chia-Hoangen_US
dc.contributor.authorLiu, Chien-Liangen_US
dc.date.accessioned2018-01-24T07:42:05Z-
dc.date.available2018-01-24T07:42:05Z-
dc.date.issued2017en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070456642en_US
dc.identifier.urihttp://hdl.handle.net/11536/142356-
dc.description.abstract近幾年來,由於網路事業的崛起,造就了許多網路平台的誕生,改變了我們商業 以及溝通的模式。隨著越來越多的用戶使這些網路平台,網路廣告產業成為眾多企業用來拓展其事業版圖的商業模式,其特色為能夠較快速且精準的尋找新的客戶,使收入模式多樣化。即時競價(RTB)是一種程序化的拍賣模式,促成各個廣告版位被購買以及銷售的系統。為了讓廣告商在即時競價系統中能夠獲得其最大利益,制定一個良好的競價策略是重要且必須的。此篇論文針對廣告點擊率進行研究,廣告點擊率是在制定競價策略時,最重要的特徵元素之一。隨著網路資訊迅速的變遷,網路廣告業的資料集時常遭遇到超出詞彙(OOV)的問題,即為特徵資料出現在測試資料集(testing data)中,卻無法在訓練資料集中(training data)找到相對應的特徵資料。在這篇論文中,我們提出一個全新的方法來處理超出詞彙問題,透過使用字元型式的卷積以及廣度與深度的架構來預測廣告的點擊率。實驗結果呈現我們的模型與經過許多特徵組合的模型比較,有著更好的成果。我們同時也發現所提出的模型能夠解決在字串特徵上的超出詞彙問題。zh_TW
dc.description.abstractThe Internet consolidated itself as a very powerful platform that has changed the way we do business, and the way we communicate. As more users are used to the Internet, online advertising is one of the most effective ways for businesses of all sizes to expand their reach, find new customers, and diversify their revenue streams. Real-time bidding (RTB) is a programmatic auction that allows the advertising inventory to be bought and sold on a per-impression basis. To achieve the highest profits for advertisers in RTB, it is an important issue to formulate a good bidding strategy. This thesis focuses on click through rate (CTR), which is one of the most significant factors in setting bidding strategy. As online information change rapidly, the data of online advertisement always suffer from out of vocabulary (OOV) problem, namely the data is presented in training set, but absent from the test set. This thesis proposes a novel way to deal with the OOV problem by using character-level convolution and uses a deep-and-wide network architecture to build a deep learning model. The experiment results indicate that the proposed method can achieve better performance than those with multiple feature combinations. Moreover, the investigation also shows that the proposed method could benefit from the proposed scheme, which resolves the OOV problem presented in string features.en_US
dc.language.isoen_USen_US
dc.subject類神經網路zh_TW
dc.subject卷積類神經網路zh_TW
dc.subject超出詞彙問題zh_TW
dc.subjectneural networken_US
dc.subjectconvolutional neural networken_US
dc.subjectout of vocabularyen_US
dc.title基於字元型式廣度與深度卷積類神經網路預測廣告點擊率之研究zh_TW
dc.titleClick Through Rate Prediction Using Character-level Wide and Deep Convolutional Neural Networken_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
顯示於類別:畢業論文