Full metadata record
DC FieldValueLanguage
dc.contributor.authorHWANG, SFen_US
dc.contributor.authorCHANG, GJen_US
dc.date.accessioned2014-12-08T15:20:08Z-
dc.date.available2014-12-08T15:20:08Z-
dc.date.issued1991-06-17en_US
dc.identifier.issn0377-2217en_US
dc.identifier.urihttp://hdl.handle.net/11536/14274-
dc.description.abstractAs a model of certain location problem, we consider the following domination problem. The k-neighbor domination problem is to select a minimum cardinality vertex set D of a graph G = (V, E) such that every vertex x not in D is adjacent to at least k vertices in D. This paper presents a linear algorithm to solve the problem for block graphs. For any fixed k, we also prove that the k-neighbor domination problem is NP-complete for some classes of graphs.en_US
dc.language.isoen_USen_US
dc.subjectLOCATION PROBLEMen_US
dc.subjectDOMINATIONen_US
dc.subjectBLOCK GRAPHen_US
dc.subjectLINEAR ALGORITHMen_US
dc.subjectNP-COMPLETEen_US
dc.titleTHE K-NEIGHBOR DOMINATION PROBLEMen_US
dc.typeArticleen_US
dc.identifier.journalEUROPEAN JOURNAL OF OPERATIONAL RESEARCHen_US
dc.citation.volume52en_US
dc.citation.issue3en_US
dc.citation.spage373en_US
dc.citation.epage377en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1991FX28100012-
dc.citation.woscount1-
Appears in Collections:Articles