完整後設資料紀錄
DC 欄位語言
dc.contributor.authorJing, Min-Quanen_US
dc.contributor.authorHo, Wei-Jongen_US
dc.contributor.authorChen, Ling-Hweien_US
dc.date.accessioned2014-12-08T15:20:08Z-
dc.date.available2014-12-08T15:20:08Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-4244-4705-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/14278-
dc.description.abstractIn this paper, we present a method for automatically classifying/recognizing the shoeprint images based on the outsole pattern. Shoeprints are distinctive patterns often found at crime scenes that can provide valuable forensic evidence. Directionality is the most obvious feature in these shoeprints. For extracting features corresponding to the directionality, co-occurrence matrices, Fourier transform, and a directional matrix are applied to the shoeprint image. With the stage of principal component transform, the method is invariant to rotation and translation variance. Experimental results demonstrate the performance of the method.en_US
dc.language.isoen_USen_US
dc.subjectForensic scienceen_US
dc.subjectShoeprinten_US
dc.subjectFourier transformsen_US
dc.subjectCo-occurrence matrixen_US
dc.subjectPrincipal component transformen_US
dc.titleA NOVEL METHOD FOR SHOEPRINTS RECOGNITION AND CLASSIFICATIONen_US
dc.typeArticleen_US
dc.identifier.journalPROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6en_US
dc.citation.spage2846en_US
dc.citation.epage2851en_US
dc.contributor.department資訊科學與工程研究所zh_TW
dc.contributor.departmentInstitute of Computer Science and Engineeringen_US
dc.identifier.wosnumberWOS:000281720401184-
顯示於類別:會議論文