標題: Increasing detectability in semiconductor foundry by multivariate statistical process control
作者: Yang, Chyan
Chang, Chao-Jung
Niu, Han-Jen
Wu, Hsueh-Chang
應用數學系
Department of Applied Mathematics
關鍵字: statistical process control ( SPC);advance process control ( APC);fault detection and;classification ( FDC);Hotelling T(2);principal component analysis ( PCA);semiconductor industry
公開日期: 2008
摘要: Quality has become a key determinant of success in all aspects of modern industries. It is especially prominent in the semiconductor industry. This paper reviews the contributions of statistical analysis and methods to modern quality control and improvement. The two main areas are statistical process control (SPC) and experimentation. The statistical approach is placed in the context of recent developments in quality management, with particular reference to the total quality movement. In SPC, Hotelling T2 has been applied in laboratories with good result; however, it is rarely used in mass production, especially in the semiconductor industry. An advance process control (APC) of RD study, involving Hotelling T2 and principal component analysis (PCA), is performed on a high density plasma chemical vapour deposition (HDP CVD) equipment in the 12-inch wafer fab. The design of experiment (DOE) of gas flow and RF power effects is used to work the feasibility of PCA for SPC and examine the correlation among tool parameters. In this work, the Hotelling T2 model is shown to be sensitive to variations as small as (+/ - )5% in the tool parameters. Compared with classical PDCA and qualitative analysis, applying statistical in process control is more effective and indeed necessary. This model also is especially suitable to the semiconductor industry.
URI: http://hdl.handle.net/11536/14299
http://dx.doi.org/10.1080/14783360802018079
ISSN: 1478-3363
DOI: 10.1080/14783360802018079
期刊: TOTAL QUALITY MANAGEMENT & BUSINESS EXCELLENCE
Volume: 19
Issue: 5
起始頁: 429
結束頁: 440
顯示於類別:期刊論文


文件中的檔案:

  1. 000255379100001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。