完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃志隆zh_TW
dc.contributor.author蕭旭峯zh_TW
dc.contributor.authorHuang, Zhi-Longen_US
dc.contributor.authorHsiao, Hsu-Fengen_US
dc.date.accessioned2018-01-24T07:42:52Z-
dc.date.available2018-01-24T07:42:52Z-
dc.date.issued2014en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT079957503en_US
dc.identifier.urihttp://hdl.handle.net/11536/143005-
dc.description.abstract在使用區塊匹配演算法的雙向預測中,區塊匹配演算法被用來找尋和目標區塊最接近的二個參考區塊,這二個參考被融合成一個區塊,而這個區塊會比由匹配演算法找到的二個區塊還要像目標區塊。因此由多個參考區塊融合而成的區塊會比單個參考區塊還要更接近目標區塊。   在這篇論文裡, 我們也使用多個參考區塊來產生目標區塊的預測值。我們使用模板匹配演算法來尋找多個參考模板和參考區塊,並基於奇異值和最小的方法以這些參考模板和參考區塊的資訊來產生目標區塊的預測值。因為參考模板和參考區塊是由模板匹配演算法找到的,移動向量的資訊可以不被包含在位元串流中。zh_TW
dc.description.abstractIn the bi-direction inter prediction of block matching algorithm, block matching algorithms are used to find two block predictors which are similar with the target block and these two block predictors are combined as one block predictor. This predictor can be more similar with the target block than the two predictors found by block matching algorithm. Therefore, the predictor generated by multiple candidates can be better than the predictor generated by only one candidate. In this paper, we generate the predictor from multiple predictor candidates too. We find several template candidates and block candidates using template matching algorithm. Then we generate the target block predictor according to the information of template candidates, block candidates and target template based on minimization of the sum of the singular values. Because the block candidates and template candidates are found using template matching algorithm, the information of motion vector does not need be encoded in the bit-stream.en_US
dc.language.isoen_USen_US
dc.subject視訊壓縮zh_TW
dc.subject幀間預測zh_TW
dc.subject模板匹配zh_TW
dc.subject多預測值zh_TW
dc.subject奇異值zh_TW
dc.subject低秩矩陣近似zh_TW
dc.subjectVideo compressionen_US
dc.subjectInter predictoren_US
dc.subjectTemplate matchingen_US
dc.subjectMultiple hypothesisen_US
dc.subjectSingular valueen_US
dc.subjectLow rank matrix approximationen_US
dc.title用於幀間預測之以相似度最大化為基礎之混合式匹配方法zh_TW
dc.titleSimilarity maximization based hybrid matching scheme for inter-frame predictionen_US
dc.typeThesisen_US
dc.contributor.department多媒體工程研究所zh_TW
顯示於類別:畢業論文