Full metadata record
DC FieldValueLanguage
dc.contributor.author陳鍵誼zh_TW
dc.contributor.author陳三元zh_TW
dc.contributor.authorChen, Jian-Yien_US
dc.contributor.authorChen, San-Yuanen_US
dc.date.accessioned2018-01-24T07:43:00Z-
dc.date.available2018-01-24T07:43:00Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070251606en_US
dc.identifier.urihttp://hdl.handle.net/11536/143111-
dc.description.abstract現今,關節軟骨相關病症在老年退化性疾病以及肥胖併發疾病中是一個相當常見的問題。儘管目前臨床上有一些治療手段及減緩惡化的方法,但要讓關節軟骨完全康復目前仍然是束手無策。在本研究中,我們發展出了具有整合組織工程的三要素 – 細胞、生醫材料、生長因子 – 的多功能雙性奈米磁性膠囊,應用於關節軟骨分生的研究,整合了組織工程研究的要素。此研究共分成三部份。在第一部分,雙性奈米磁性膠囊的製備是利用改質明膠透過雙乳化的方式與超順磁氧化鐵奈米顆粒合成出具有奈米中空結構的雙層膠囊。其殼核結構的親疏水特性,賦予雙性明膠奈米磁性膠囊具有同時攜帶親疏水兩種物質的高度可變動性,對於藥物包覆上具有更多元的選擇。第二部分則是在細胞測試中,我們發現載體對於軟骨先驅型細胞的生物相容性,不論在短時間或長時間共同培養下都具有極佳的表現,而且細胞在短時間內即有吞噬載體的現象,大幅增加了油性超順磁氧化鐵奈米顆粒進入細胞的可行性。利用包覆其中的超順磁氧化鐵奈米顆粒其磁感應能力,賦予修復細胞吞噬載體後具有足以受到外部磁場引導並在患部大量累積的功能性,改善了臨床的細胞療法中無法長時間維持的困境。第三部份我們分析了軟骨先驅型細胞對於受到雙性明膠奈米磁性膠囊/外部磁場/轉化生長因子β1三種刺激來源環境下的分化情況。透過免疫螢光染色(IF staining)、阿新藍染色(alcian blue)以及其他軟骨特性分析下,我們發現包覆轉化生長因子β1的雙性明膠奈米磁性膠囊,在外部磁場的作用刺激下,與外部磁場的作用刺激下的組別,在第二型膠原蛋白的分析上同樣具有較高的蛋白質螢光與硫化糖胺聚糖的表現量,意味具有刺激其他先驅型細胞往正常健康的軟骨細胞分化的潛力與可行性。因此,本研究發展出的雙性明膠奈米磁性膠囊,結合了生物材料、細胞療法與軟骨刺激分化的功能,不僅僅在軟骨組織修復上具有極高的發展潛能,其相容性與可塑性讓我們期望雙性明膠奈米磁性膠囊在組織工程上能有更多元的發展。zh_TW
dc.description.abstractArticular cartilage disorder is a common joint disorder that often occurs on elderly, obese, or athletic population. In spite of several available clinical therapeutic options, there is no method available that facilitates complete healing of the articular cartilage. To overcome the obstacles, in this study, we developed a brand new nanomedicine biomaterial platform combining the three key factors – cells, biomaterials, and biofactors, with both physical and medical stimulation potential for promoting articular cartilage differentiation. We named it amphiphilic gelatin nanocapsules (AGNCs). AGNCs were synthesized with hexanoic anhydride (HA) graft-modified gelatin with superparamagnetic iron oxide (SPIOs) using double emulsification with two-phase (hydrophilic/hydrophobic) co-existence in one single protein-based nanoparticle. Furthermore, in a series examination of the basic and advanced characteristics on AGNCs on encapsulation, cell viability, cellular uptake and cell guiding ability results demonstrate a high availability and feasibility in in vitro tests. For articular cartilage tissue repair preliminary experiments, we choose a mouse teratocarcinoma cells – ATDC5 cells as our model cells to investigate chondrogenic inducements from the combination of AGNCs/ magnet/ rmTGF-β1. The immunofluorescence staining (IF), alcian blue, and Blyscan assay result showed that the expression of type II collagen in 7 and 14 days of stimulation shows a positive inducement on ATDC5 with external magnetic field and rmTGF-β1 stimuli. The above-mentioned results demonstrate the application of AGNCs is highly promising cartilage tissue repair.en_US
dc.language.isozh_TWen_US
dc.subject雙性高分子zh_TW
dc.subject明膠zh_TW
dc.subject奈米磁性膠囊zh_TW
dc.subject軟骨zh_TW
dc.subject組織修復zh_TW
dc.subjectAmphiphilic polymersen_US
dc.subjectgelatinen_US
dc.subjectmagnetic nanocapsulesen_US
dc.subjectcartilageen_US
dc.subjecttissue repairen_US
dc.title多功能雙性明膠奈米磁性膠囊於關節軟骨組織修復之研究zh_TW
dc.titleStudies of Multi-functional Amphiphilic Gelatin Nanocapsules Platform on Articular Cartilage Tissue Repairen_US
dc.typeThesisen_US
dc.contributor.department材料科學與工程學系奈米科技碩博士班zh_TW
Appears in Collections:Thesis