Full metadata record
DC FieldValueLanguage
dc.contributor.author呂品慧zh_TW
dc.contributor.author王秀瑛zh_TW
dc.contributor.authorLu, Pin-Huien_US
dc.contributor.authorWang, Hsiu-yingen_US
dc.date.accessioned2018-01-24T07:43:20Z-
dc.date.available2018-01-24T07:43:20Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352611en_US
dc.identifier.urihttp://hdl.handle.net/11536/143337-
dc.description.abstract大腦是人類各種機能的訊號中心,掌管身體各部位及器官之運作,因此腦科學一直以來都是醫學上重要的研究領域,而近年來更是廣泛運用到許多不同領域,例如透過偵測腦波訊號辨識疾病、操控機械或神經義肢…等,因此在本論文中,我們嘗試錄製健康受試者的腦波資料並進行分類。我們將腦波資料透過有限混合常態模型並利用EM演算法所估計參數,以平均數及標準差來表示一連串的腦波資料後,將這些參數作為支持向量機的分類依據,分別使用不同的參數組合並透過Grid Search以及 leave-one-out cross validation計算分類正確率,找出較適合作為本研究之腦波分類的參數。zh_TW
dc.description.abstractIn this study, we aim to recognize Electroencephalography (EEG) data under different imaging conditions. We recorded 17 healthy persons’ EEG. The data are fitted by the finite mixture normal model, and the parameters of the mixture models are estimated by the EM algorithm. We propose using the support vector machine method to classify the EEG data, and adopt the leave-one-out cross validation to compute the accuracy of classification. The accuracy of the classification based on the support vector machine is higher than that based on the maximum likelihood approach.en_US
dc.language.isozh_TWen_US
dc.subject支持向量機zh_TW
dc.subject有限混合常態模型zh_TW
dc.subject腦波辨識zh_TW
dc.subjectSupport Vector Machineen_US
dc.subjectFinite Mixture Normal Modelen_US
dc.subjectEEGen_US
dc.title應用有限混合常態模型與支持向量機分析想像情境下的腦波訊號zh_TW
dc.titleRecognizing EEG Data Using the Finite Mixture Normal Model and Support Vector Machineen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis