Full metadata record
DC FieldValueLanguage
dc.contributor.author余承叡zh_TW
dc.contributor.author王秀瑛zh_TW
dc.contributor.authorYu, Cheng-Ruien_US
dc.contributor.authorWang, Hsiuyingen_US
dc.date.accessioned2018-01-24T07:43:25Z-
dc.date.available2018-01-24T07:43:25Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352604en_US
dc.identifier.urihttp://hdl.handle.net/11536/143405-
dc.description.abstract由於現今科技進步,可以在短時間內記錄大量的資料,但如何從這些龐大的數據中找出重要和可利用的資訊,為許多研究者討論的議題。在醫學界,腦電圖(Electroencephalography, EEG)屬於非侵入式檢查,每秒可以記錄256或512個資料點,因此腦電圖資料量很大,本論文發展一套統計方法來辨識不同狀態下的腦波。在本論文中,利用高斯混合模型進行特徵萃取,再透過線性判別分析進行分類,進一步使用不同的電極排序之組合範式,針對不同觀察角度做分析,並與傳統上使用的最大概似方法做比較。最後由蒐集的三十四筆腦波資料中,可以發現,本論文提出的方法比傳統的方法更有效的辨識出想像平靜與運動狀態下的腦波。zh_TW
dc.description.abstractWith the rapid development of technology, the amount of data produced is enormous and increasing. How to obtain useful information from huge data, such as Electroencephalography data, becomes a challenge problem. In the medical application, an electroencephalograph is a useful test to help diagnose epilepsy or other diseases, which can record 256 or 512 sample points in a second. In order to analyze these large data, in this study, we develop a method using the Gaussian mixture model and the linear discriminant analysis to efficiently recognize EEG under difference conditions. In addition, we compare this method with a traditional method using a collected data with 34 samples. The result shows that the proposed method is more efficiently to recognize the collected EEG data than the traditional method.en_US
dc.language.isozh_TWen_US
dc.subject腦波zh_TW
dc.subject腦電圖zh_TW
dc.subject組合範式zh_TW
dc.subject高斯混合模型zh_TW
dc.subject線性判別分析zh_TW
dc.subjectbrainwaveen_US
dc.subjectEEGen_US
dc.subjectmontageen_US
dc.subjectGaussian mixture modelen_US
dc.subjectlinear discriminant analysisen_US
dc.title高斯混合模型與線性判別分析—應用於辨識不同狀態下之腦波zh_TW
dc.titleGaussian Mixture Model and Linear Discriminant Analysis with Application to EEG Recognitionen_US
dc.typeThesisen_US
dc.contributor.department統計學研究所zh_TW
Appears in Collections:Thesis