完整後設資料紀錄
DC 欄位語言
dc.contributor.author張凱博zh_TW
dc.contributor.author傅恆霖zh_TW
dc.contributor.authorChang, Kai-Poen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2018-01-24T07:43:27Z-
dc.date.available2018-01-24T07:43:27Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352225en_US
dc.identifier.urihttp://hdl.handle.net/11536/143445-
dc.description.abstract令G是一個簡單且有限的圖。我們說一個映成函數從點集合到集合{1,2,...,|G|}是一個互質標記,則對於圖G中的任兩相連接的點所標記的整數都必須是互質的。在 1978 年,Roger Entringer 提出"所有的樹都有互質標記"這個猜測;但是到目前為止,這個猜測還沒有被解出來。 樹是一個二部圖,記做 T_n=(A,B),其中n為點數。在這篇論文中,我們證明當點數 n>=105 且 min{|A|,|B|}<=pi(n) 成立時,則這一類的樹都有互質標記,其中 pi(n) 是小於等於n的正整數中質數的總數。另外我們也會探討當點數至少11時,是否存在有互質標記的4-正則圖。zh_TW
dc.description.abstractLet G be a simple and finite graph. A bijection from its vertex set onto {1,2,...,|G|} is called a prime labelling of G if any two adjacent vertices are labelling by copirme integers. Entringer conjectured that every tree has a prime labelling. In this thesis, we show that a tree T_n=(A,B) of order n>=105 with bipartition (A,B) satisfying min{|A|,|B|}<=pi(n) has a prime labelling, where pi(n) is the number of primes at most n. Moreover, we also study that the existence of a 4-regular graph with prime labelling provided the number of vertices is at least 11.en_US
dc.language.isoen_USen_US
dc.subject互質標記zh_TW
dc.subjectzh_TW
dc.subject正則圖zh_TW
dc.subjectPrime labellingen_US
dc.subjectTreeen_US
dc.subjectRegular graphen_US
dc.title樹和4-正則圖的互質標記zh_TW
dc.titlePrime Labellings of Trees and 4-regular Graphsen_US
dc.typeThesisen_US
dc.contributor.department應用數學系所zh_TW
顯示於類別:畢業論文