完整後設資料紀錄
DC 欄位語言
dc.contributor.author陳慶翰zh_TW
dc.contributor.author羅濟群zh_TW
dc.contributor.author林斯寅zh_TW
dc.contributor.authorChen, Ching-Hanen_US
dc.contributor.authorLo, Chi Chunen_US
dc.contributor.authorLin, Szu Yinen_US
dc.date.accessioned2018-01-24T07:43:28Z-
dc.date.available2018-01-24T07:43:28Z-
dc.date.issued2016en_US
dc.identifier.urihttp://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070353432en_US
dc.identifier.urihttp://hdl.handle.net/11536/143463-
dc.description.abstract時間序列預測在做未來決策時扮演著重要的角色,而自我回歸整合移動平均 (Autoregressive Integrated Moving Average)是其中一個被廣泛使用的時間序列預測模型,但該模型仍有修正的空間,使預測能達到更佳的準確度。本篇論文提出一個基於基因演算法(Genetic Algorithm)的自我回歸整合移動平均模型,該模型與傳統自我回歸整合移動平均模型的差別為有對時間序列進行平滑(smoothing)處理以達到雜訊降低(noise reduction)的效果,並期望透過這樣的設計,可以提升預測準確度。我們採用許多研究使用的日經225股票之歷史資料來驗證,在實驗中,本研究提議之方法的平均絕對誤差百分比(Mean Absolute Percentage Error)相較於傳統自我回歸整合移動平均模型降低了34.19%,由實驗結果可證實本研究所提議之方法可以獲得較佳的預測準確度。zh_TW
dc.description.abstractTime series forecasting plays an important role in making future decision. The autoregressive integrated moving average (ARIMA) is one of most popular time series forecasting models, but it still can be improved to obtain better accuracy. This thesis proposes an ARIMA model based on genetic algorithm. Compared to the traditional ARIMA model, the proposed model reduces noise among time series through data smoothing, and we hope this design can increase forecasting accuracy. The Nikkei 225 stock index which is used in many previous studies, is selected for experiments. Experimental results indicate that the MAPE of the proposed model is reduced by 34.19% as compared to the MAPE of the ARIMA, and it can verify that the proposed approach achieves better accuracy.en_US
dc.language.isozh_TWen_US
dc.subject自我回歸整合移動平均模型zh_TW
dc.subject基因演算法zh_TW
dc.subject雜訊降低zh_TW
dc.subjectARIMAen_US
dc.subjectGenetic Algorithmen_US
dc.subjectnoise reductionen_US
dc.title一個基於基因演算法的自我回歸整合移動平均模型zh_TW
dc.titleAn Autoregressive Integrated Moving Average Model Based on Genetic Algorithmen_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
顯示於類別:畢業論文