標題: | 關於(2,3)-圖形零和流數之研究 Zero-Sum Flow Numbers of (2,3)-Graphs |
作者: | 游鎮魁 翁志文 Eu, Zhen-Kui Weng, Chih-Wen 應用數學系所 |
關鍵字: | 零和流;零和 k-流;零和流數;(2,3)-圖形;聖誕燈;樹燈;zero-sum flow;zero-sum k-flow;zero-sum flow number;(2,3)-graph;Christmas lamp;tree lamp |
公開日期: | 2016 |
摘要: | 對一無向圖形 G,令 E(v) 記為圖形中頂點 v 的相鄰邊所構成之集合。圖 G 上一零和流為一組對邊的非零實數編號 f 使得對每一頂點 v 來說,
∑ f (e) = 0
e∈E(v)
皆成立。 零和 k-流為一零和流且編號全來自集合{±1,...,±(k−1)}。 零和流數 F(G) 定義為圖 G 具有零和 k-流之最小正整數 k。在此篇論文中,對一(2,3)-圖形 G 給出了具有零和流數 3 的充分且必要之條件。此外我們研究由路徑和樹擴展而成之(2,3)-圖形上的零和流數,名曰,聖誕燈、樹燈,並總結它們的零和流數最多為 5。 For an undirected graph G, let E(v) denote the set of edges incident on a vertex v ∈ V(G). A zero-sum flow is an assignment f of non-zero real numbers on the edges of G such that ∑ f (e) = 0 e∈E(v) for all v ∈ V(G). A zero-sum k-flow is a zero-sum flow with integers from the set {±1,...,±(k−1)}. Let zero-sum flow number F(G) be defined as the least number of k such that G admits a zero-sum k-flow. In this paper, a necessary and sufficient condition for (2,3)-graph G with F(G) = 3 is given. Furthermore we study zero-sum flow number of (2,3)-graphs expanded from path and tree, namely, the Christmas lamps, the tree lamps, respectively, and conclude that their zero-sum flow numbers are at most 5. |
URI: | http://etd.lib.nctu.edu.tw/cdrfb3/record/nctu/#GT070352229 http://hdl.handle.net/11536/143485 |
顯示於類別: | 畢業論文 |