Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Kang-Mingen_US
dc.contributor.authorLo, Pei-Chenen_US
dc.date.accessioned2018-08-21T05:52:35Z-
dc.date.available2018-08-21T05:52:35Z-
dc.date.issued2005-08-25en_US
dc.identifier.issn1016-2372en_US
dc.identifier.urihttp://dx.doi.org/10.4015/S1016237205000263en_US
dc.identifier.urihttp://hdl.handle.net/11536/143842-
dc.description.abstractAs the advantages of meditation have been outlined literally, scientific exploration of the meditation phenomena becomes significant. Meditation EEG may provide an access to the mental states beyond normal consciousness. It is the first attempt to score the meditation course by EEG. Wavelet analysis and fuzzy c-means (FCM) are applied in the automatic interpretation algorithm. However, FCM applied straightforward to quantitative feature vectors often results in an over-trifling interpretation. As a consequence, this paper presents novel cluster-managing strategies for achieving an interpretation closer to the result of naked-eye examination. The running gray-scale chart, derived by extracting, clustering, and coding the EEG features, reveals five different meditation scenarios differing from those of the controlled subjects.en_US
dc.language.isoen_USen_US
dc.subjectMeditation EEG (electroencephalogram) scoringen_US
dc.subjectWavelet analysisen_US
dc.subjectFuzzy c-means clustering (FCM)en_US
dc.subjectmeditation scenarioen_US
dc.titleMEDITATION EEG INTERPRETATION BASED ON NOVEL FUZZY-MERGING STRATEGIES AND WAVELET FEATURESen_US
dc.typeArticleen_US
dc.identifier.doi10.4015/S1016237205000263en_US
dc.identifier.journalBIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONSen_US
dc.citation.volume17en_US
dc.citation.spage167en_US
dc.citation.epage175en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000213386100002en_US
Appears in Collections:Articles