Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, Chi Hin | en_US |
dc.contributor.author | Czubak, Magdalena | en_US |
dc.contributor.author | Disconzi, Marcelo M. | en_US |
dc.date.accessioned | 2018-08-21T05:52:45Z | - |
dc.date.available | 2018-08-21T05:52:45Z | - |
dc.date.issued | 2017-11-01 | en_US |
dc.identifier.issn | 0393-0440 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.geomphys.2017.07.015 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/143918 | - |
dc.description.abstract | We consider the generalization of the Navier Stokes equation from R-n to the Riemannian manifolds. There are inequivalent formulations of the Navier Stokes equation on manifolds due to the different possibilities for the Laplacian operator acting on vector fields on a Riemannian manifold. We present several distinct arguments that indicate that the form of the equations proposed by Ebin and Marsden in 1970 should be adopted as the correct generalization of the Navier-Stokes to the Riemannian manifolds. (C) 2017 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Navier-Stokes | en_US |
dc.subject | Formulation | en_US |
dc.subject | Riemannian manifolds | en_US |
dc.subject | Deformation tensor | en_US |
dc.title | The formulation of the Navier-Stokes equations on Riemannian manifolds | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.geomphys.2017.07.015 | en_US |
dc.identifier.journal | JOURNAL OF GEOMETRY AND PHYSICS | en_US |
dc.citation.volume | 121 | en_US |
dc.citation.spage | 335 | en_US |
dc.citation.epage | 346 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000412866100025 | en_US |
Appears in Collections: | Articles |