完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChan, Chi Hinen_US
dc.contributor.authorCzubak, Magdalenaen_US
dc.contributor.authorDisconzi, Marcelo M.en_US
dc.date.accessioned2018-08-21T05:52:45Z-
dc.date.available2018-08-21T05:52:45Z-
dc.date.issued2017-11-01en_US
dc.identifier.issn0393-0440en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.geomphys.2017.07.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/143918-
dc.description.abstractWe consider the generalization of the Navier Stokes equation from R-n to the Riemannian manifolds. There are inequivalent formulations of the Navier Stokes equation on manifolds due to the different possibilities for the Laplacian operator acting on vector fields on a Riemannian manifold. We present several distinct arguments that indicate that the form of the equations proposed by Ebin and Marsden in 1970 should be adopted as the correct generalization of the Navier-Stokes to the Riemannian manifolds. (C) 2017 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNavier-Stokesen_US
dc.subjectFormulationen_US
dc.subjectRiemannian manifoldsen_US
dc.subjectDeformation tensoren_US
dc.titleThe formulation of the Navier-Stokes equations on Riemannian manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2017.07.015en_US
dc.identifier.journalJOURNAL OF GEOMETRY AND PHYSICSen_US
dc.citation.volume121en_US
dc.citation.spage335en_US
dc.citation.epage346en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000412866100025en_US
顯示於類別:期刊論文