Full metadata record
DC FieldValueLanguage
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorWu, Pei Yuanen_US
dc.date.accessioned2018-08-21T05:52:46Z-
dc.date.available2018-08-21T05:52:46Z-
dc.date.issued2017-12-01en_US
dc.identifier.issn1846-3886en_US
dc.identifier.urihttp://dx.doi.org/10.7153/oam-2017-11-69en_US
dc.identifier.urihttp://hdl.handle.net/11536/143937-
dc.description.abstractC We show that if A = [a(ij)](i)(n),(j=1) is an n-by-n complex matrix and A '= [a '(ij)](i)(n),(j=1), where a '(ij) ={a(ij) if (i,j) = (1,2),..., (n-1,n) or (n,1), 0 otherwise, then w(A) >= w(A '), where w((.)) denotes the numerical radius of a matrix. Moreover, if n is odd and a(12),..., a(n-1),(n),a(n1) are all nonzero, then w(A) = w(A ') if and only if A = A '. For an even n, under the same nonzero assumption, we have W(A) = W(A ') if and only if A = A ', where W((.)) is the numerical range of a matrix.en_US
dc.language.isoen_USen_US
dc.subjectNumerical rangeen_US
dc.subjectnumerical radiusen_US
dc.titleLOWER BOUNDS FOR THE NUMERICAL RADIUSen_US
dc.typeArticleen_US
dc.identifier.doi10.7153/oam-2017-11-69en_US
dc.identifier.journalOPERATORS AND MATRICESen_US
dc.citation.volume11en_US
dc.citation.spage999en_US
dc.citation.epage1014en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000413118300006en_US
Appears in Collections:Articles